Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intense 2-color double X-ray laser pulses: a powerful tool to study ultrafast processes

04.12.2013
A team working at the SACLA X-ray Free-Electron Laser (XFEL) in Japan has succeeded in generating ultra-bright, two-color X-ray laser pulses, for the first time in the hard X-ray region.

These light pulses with different wavelengths, whose time separation can be adjusted with attosecond accuracy, are very powerful tools to investigate the structure of matter and the dynamics of ultrafast physical processes and chemical reactions.


A team working at the SACLA X-ray Free-Electron Laser in Japan has succeeded in generating ultra-bright, two-color X-ray laser pulses, for the first time in the hard X-ray region. These light pulses with different wavelengths, whose time separation can be adjusted with attosecond accuracy, are very powerful tools to investigate the structure of matter and the dynamics of ultrafast physical processes and chemical reactions.

Credit: RIKEN

SACLA is one of only two facilities in the world to offer XFEL as light source to investigate matter, with various applications in biology, chemistry, physics and materials science. XFELs have the capacity to deliver radiation ten billion times brighter and with pulses one thousand times shorter than existing synchrotron X-ray radiation sources. Until now, XFELs have normally emitted one radiation pulse at a single wavelength like conventional visible lasers.

The Japanese team led by Toru Hara of the RIKEN SPring-8 Center, reports today in the journal Nature Communications that they have succeeded in creating double X-ray pulses with tunable wavelengths that can be relatively separated by more than 30%. This was achieved using variable-gap undulators, that act as a radiator and whose resonant wavelength can be largely varied by changing the magnetic field strength.

"The relative separation we have achieved is ten times bigger than what had been achieved in the past, and will make two-color lasers much easier to use as a light source. In addition, the two-color pulses can be emitted on different axes to spatially separate them. Our achievement significantly ameliorates the usability of XFEL," explains Dr Hara.

The laser pulses, that last for less than 10 femtoseconds (10−15 s) and have peak powers of a few giga-watts, can be generated with time intervals adjusted with attosecond (10-16 s) precision.

"This will enable us to elucidate X-ray-induced ultrafast transitions of electronic states and structures, which will significantly contribute to the advancement of ultrafast chemistry, plasma physics and astrophysics, and X-ray quantum optics," conclude the authors.

For more information please contact:

Juliette Savin
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225
email: pr@riken.jp
Reference:
Hara et al. "Two-colour hard X-ray free-electron laser with wide tunability"
Nature Communications, 2013
About RIKEN
RIKEN is Japan's largest research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in leading scientific and technology journals covering a broad spectrum of disciplines including physics, chemistry, biology, engineering, and medical science. RIKEN's research environment and strong emphasis on interdisciplinary collaboration and globalization has earned a worldwide reputation for scientific excellence.

About the SPring-8 Center

The RIKEN SPring-8 Center (RSC) was established in 2005 as a photon science research complex to enhance the distinctive capabilities of X-ray science. RSC is now the only research entity in the world offering both an X-ray free electron laser (SACLA) and a Synchrotron Radiation facility (SPring-8), at the same location.

About SACLA

In 2012, with the opening of SACLA, RIKEN became the second institution in the world to offer X-ray Free Electron Laser (XFEL) for research. The facility boasts the shortest wavelength in the world (0.6 nm), an extremely broad wavelength range and a very high peak output of 100 GW. This unique X-ray laser enables researchers to peer deeper inside matter and investigate unexplored areas of research.

Juliette Savin | EurekAlert!
Further information:
http://www.riken.jp

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>