Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative Modular Process Makes Plastic Film Coating Highly Efficient

09.06.2015

The multiTask joint project funded by the Saxon Ministry of Science and Fine Arts (SMWK) and the European Fund for Regional Development (EFRE) was successfully completed. Scientists at the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, ISA Installations-, Steuerungs- und Automatisierungs GmbH and VTD Vakuumtechnik Dresden GmbH laid down the foundations of a new vacuum coating process for plastic films.

Plastic films serve many purposes in everyday life. They are used for packaging food, as substrates for flexible solar cells, even as decorative films for furniture. To meet the requirements of various applications, films must be processed and coated.


Pilot plant for the vacuum coating of plastic film in roll-to-roll mode. Existing processing lines such as these or industrial facilities can be refitted for the innovative process.

Fraunhofer FEP

There are several different procedures for the vacuum coating of plastic films that are suitable for specific cases of application, but there are also challenges, such as with coating larger film surfaces.

Electron beam evaporation is a very complex and therefore expensive process that requires a significant investment; the boat evaporation (“Schiffchenbedampfung”) process mainly involves the evaporation of aluminium and sputtering is time-consuming.

The multiTask project lays the foundation for an innovative, modular and highly flexible vacuum coating process. “The innovation of this costing process resides in its tremendous flexibility,” explained Steffen Straach, Project Head of the “Flexible Products” Division at Fraunhofer FEP. “In addition to aluminium, many other materials can be used, such as copper, silver and oxides, can be applied on any film width.”

The process can also be used as a plasma-supported procedure. The high coating rates and automated operations greatly increase the overall process. The groundwork carried out by the project partner ISA led to the design of a special power supply adapted for the process, which played a significant role in the success of the project.

As a result of the work carried out under the project, the groundwork had been laid for the partners, jointly with the operators or owner of foil coating plants to develop customized technologies, bring new products to the market or optimize existing processes.

“We are pleased to be able to take advantage of a new process platform for joint development projects,” says Dr. Nicolas Schiller, Head of the “Flexible Products” Division at Fraunhofer FEP.

The project partners would like to thank the Free State of Saxony and the European Union for their funding of the project.

Fraunhofer FEP
http://www.fep.fraunhofer.de

ISA Installations-, Steuerungs- und Automatisierungs GmbH
http://www.isa-electric.de

VTD Vakuumtechnik Dresden GmbH
http://www.vtd.de

Press contact:

Mrs. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 452 | annett.arnold@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/5cr

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>