Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Testing Equipment for Demanding Heating Processes

23.11.2012
Modern manufacturing processes, such as the manufacture of solar cells or integrated circuits in micro-electronics often take place under vacuum conditions.

Vacuum processes also offer some advantages in the coating of glass or metals, for example in preventing unwanted oxidation processes.


Vacuum test equipment for long term testing with infrared emitters

Copyright Heraeus Noblelight 2012

Many of these processes require high energy, precisely controllable heating sources. This is where quartz glass infrared emitters offers a number of advantages. They transfer heat without contact and at high output and they also respond very quickly to control signals.

However, the use of infrared processes under vacuum conditions is not as simple as it sounds. Reflection within a closed chamber can sometimes significantly affect the heat distribution. Many parameters must be taken into consideration in the equipment design, in order that the heat is effective precisely where it is needed.

With its newly introduced vacuum testing equipment, Heraeus Noblelight can carry out tests on heating processes in automated long term operation under load conditions relating as closely as possible to those found in practice.

Many innovative products such as semi-conductors, solar cells and modern glass- and metal coatings require heating processes with special properties during their manufacture or treatment. Chip slices, discs and work pieces are processed at very high temperatures under vacuum conditions. In order to do this, extremely high heating energy has to be precisely targeted and transferred energy-efficiently. At the same time the vacuum, the high surrounding temperature or aggressive media act on the heat source.

Heraeus has now expanded its vacuum test chamber at its in-house Applications Centre with the introduction of advanced technology vacuum test equipment. With this, as well as single tests, automated long term tests can be carried out over long periods. Under the kind of loading met in practice, plant incorporating infrared heating processes can be designed cost-effectively and energy-efficiently and maintenance intervals realistically projected.

Continuous pressures up to 10-6 mbar can be generated with the vacuum test equipment and, dependent on customer specification, shortwave infrared emitters or medium wave Carbon Infrared emitters can be selected. Consequently, a wide range of emitters can be varied, in arrangement and in number. The infrared emitters heat the materials either directly in the chamber or they can be decoupled from the process area by means of a quartz glass sheathing tube. If a sheathing tube is used emitters can easily be replaced from outside. The tests are computer logged and recorded and evaluated with the customer.

“We have quickly established that the environmental conditions have a great effect on the efficiency of the infrared process,” says Martin Klinecky, Vacuum Applications Specialist at Heraeus. “Currently, the equipment is helping us to carry out further development work on our infrared emitters for the energy-saving manufacture of efficient solar cells.”

Under vacuum conditions, some materials heat up more quickly, water evaporates at lower temperatures and geometrically complicated products can be dried better. The color and type of the material and the color and thickness of the coating, as well as the required temperature and drying time also affect the heating process design. When confronted with new materials and innovative coating, it is more than worthwhile to carry out trials so that the facility or plant can be designed in the most energy-efficient way possible.

The optimum heat distribution can be simulated in advance using modern numeric methods such as Computer Aided Engineering (CAE). The vacuum test facility helps to verify or endorse the results predicted by the computer simulation.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with more than 160 years of tradition. Our fields of competence include precious metals, materials, and technologies, sensors, biomaterials, and medical products, as well as dental products, quartz glass, and specialty light sources. With product revenues of €4.8 billion and precious metal trading revenues of €21.3 billion, as well as more than 13,300 employees in over 120 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2011, Heraeus Noblelight had an annual turnover of 103 Million € and employed 731 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques.

For further information please contact:

Technical:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com/infrared

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>