Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Testing Equipment for Demanding Heating Processes

23.11.2012
Modern manufacturing processes, such as the manufacture of solar cells or integrated circuits in micro-electronics often take place under vacuum conditions.

Vacuum processes also offer some advantages in the coating of glass or metals, for example in preventing unwanted oxidation processes.


Vacuum test equipment for long term testing with infrared emitters

Copyright Heraeus Noblelight 2012

Many of these processes require high energy, precisely controllable heating sources. This is where quartz glass infrared emitters offers a number of advantages. They transfer heat without contact and at high output and they also respond very quickly to control signals.

However, the use of infrared processes under vacuum conditions is not as simple as it sounds. Reflection within a closed chamber can sometimes significantly affect the heat distribution. Many parameters must be taken into consideration in the equipment design, in order that the heat is effective precisely where it is needed.

With its newly introduced vacuum testing equipment, Heraeus Noblelight can carry out tests on heating processes in automated long term operation under load conditions relating as closely as possible to those found in practice.

Many innovative products such as semi-conductors, solar cells and modern glass- and metal coatings require heating processes with special properties during their manufacture or treatment. Chip slices, discs and work pieces are processed at very high temperatures under vacuum conditions. In order to do this, extremely high heating energy has to be precisely targeted and transferred energy-efficiently. At the same time the vacuum, the high surrounding temperature or aggressive media act on the heat source.

Heraeus has now expanded its vacuum test chamber at its in-house Applications Centre with the introduction of advanced technology vacuum test equipment. With this, as well as single tests, automated long term tests can be carried out over long periods. Under the kind of loading met in practice, plant incorporating infrared heating processes can be designed cost-effectively and energy-efficiently and maintenance intervals realistically projected.

Continuous pressures up to 10-6 mbar can be generated with the vacuum test equipment and, dependent on customer specification, shortwave infrared emitters or medium wave Carbon Infrared emitters can be selected. Consequently, a wide range of emitters can be varied, in arrangement and in number. The infrared emitters heat the materials either directly in the chamber or they can be decoupled from the process area by means of a quartz glass sheathing tube. If a sheathing tube is used emitters can easily be replaced from outside. The tests are computer logged and recorded and evaluated with the customer.

“We have quickly established that the environmental conditions have a great effect on the efficiency of the infrared process,” says Martin Klinecky, Vacuum Applications Specialist at Heraeus. “Currently, the equipment is helping us to carry out further development work on our infrared emitters for the energy-saving manufacture of efficient solar cells.”

Under vacuum conditions, some materials heat up more quickly, water evaporates at lower temperatures and geometrically complicated products can be dried better. The color and type of the material and the color and thickness of the coating, as well as the required temperature and drying time also affect the heating process design. When confronted with new materials and innovative coating, it is more than worthwhile to carry out trials so that the facility or plant can be designed in the most energy-efficient way possible.

The optimum heat distribution can be simulated in advance using modern numeric methods such as Computer Aided Engineering (CAE). The vacuum test facility helps to verify or endorse the results predicted by the computer simulation.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with more than 160 years of tradition. Our fields of competence include precious metals, materials, and technologies, sensors, biomaterials, and medical products, as well as dental products, quartz glass, and specialty light sources. With product revenues of €4.8 billion and precious metal trading revenues of €21.3 billion, as well as more than 13,300 employees in over 120 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2011, Heraeus Noblelight had an annual turnover of 103 Million € and employed 731 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques.

For further information please contact:

Technical:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com/infrared

More articles from Process Engineering:

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

nachricht Sustainable products: Fraunhofer LBF investigates recycling of halogen-free flame retardant
17.02.2016 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Expanding tropics pushing high altitude clouds towards poles, NASA study finds

06.05.2016 | Earth Sciences

IU-led study reveals new insights into light color sensing and transfer of genetic traits

06.05.2016 | Life Sciences

Thievish hoverfly steals prey from carnivorous sundews

06.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>