Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industrial application of ultra short pulsed lasers in system and process technology

14.06.2012
The focus seminar “Basics and New Developments in Ultrashort Pulse Laser Technology” took place on May 9 during the International Laser Technology Congress AKL’12 in Aachen. The seminar included the presentation of the results of the BMBF-funded PIKOFLAT project under the heading “System and process technology for structuring large surfaces with high-performance picosecond lasers”.

The use of ultra short pulsed (USP) lasers in industrial applications has been a major focus of research for several years. The focus seminar “Basics and New Developments in Ultra Short Pulse Laser Technology”, which was held recently in Aachen as part of the 9th International Laser Technology Congress AKL’12, showed that there is considerable user interest in this field. The high expectations for the half-day seminar were once again exceeded, with almost 200 people attending.


As part of the BMBF-funded project PIKOFLAT, the partners developed the Digilas laser gravure system (Schepers GmbH & Co. KG, Vreden) for machining printing and embossing cylinders using picosecond laser technology. Schepers GmbH & Co. KG, Vreden

Beam sources are no longer a limiting factor

For many years, beam sources were considered to be the limiting factor in industrial applications of USP technology. One of the results of the seminar led by Dr. Arnold Gillner from the Fraunhofer Institute for Laser Technology ILT was that this situation has now changed radically. There are two reasons for this. Firstly, it appears that there is an optimum pulse energy for maximum material ablation using USP systems: Two presentations demonstrated that for small spot sizes the pulse energy should be in the microjoule range, a level that can easily be achieved by available systems. To increase ablation performance, the pulse repetition rate must then be increased accordingly.
Secondly, the last few years have seen significant progress in regard to beam sources, and the seminar participants were shown examples of robust laser systems with pulse energies in the µJ range and repetition rates as high as the multi megahertz range. Systems with an average output power of 500 watts are commercially available, and kilowatt systems are already under development. The majority of the USP systems that are currently in use operate in the picosecond range, while femtosecond systems are still mostly at the test phase.

Major advances required in scanner technology

Developers are now primarily focusing their work on mechanical engineering. The seminar included discussions on different approaches towards achieving the huge advances that are required in scanner technology. In purely mathematical terms, the need to maximize repetition rates gives rise to speeds in excess of 100 meters a second for the movement of the laser spot on the workpiece – at a resolution of just a few micrometers. Special polygon scanners that can achieve these parameters were presented at the seminar. Alternatively, it is also possible to use acousto-optic deflectors, though these only cover a relatively small scanning field.

USP systems at work – results of the BMBF-funded PIKOFLAT project
During the second half of the seminar, various project partners presented the results of the PIKOFLAT project, which was funded by the German federal ministry of education and research (BMBF) as part of the MABRILAS funding initiative. Under the heading “System and process technology for structuring large surfaces with high-performance picosecond lasers”, the partners presented a range of innovations which led to the development of a new rotogravure system for machining printing and embossing cylinders. These included solutions in the fields of systems and mechanical engineering as well as research into the corresponding processes.
At a special evening event, the partners in the project, which was led by Dr. Stephan Büning (Schepers GmbH & Co. KG, Vreden), received the prestigious Innovation Award Laser Technology for their outstanding achievements.

Outlook

The goal of the PIKOFLAT project was to develop the machine and process technology for an industrial system capable of structuring large surfaces with high-performance picosecond lasers. This goal has been successfully achieved and the technology is now being further developed within the scope of new projects. A key part of the funding for these projects is being provided by the BMBF as part of its recently launched funding initiative “Ultra short pulsed lasers for precision micromachining”. In the light of the results of the PIKOFLAT project, there was a broad consensus among the seminar participants that this kind of technology funding in thematic alliances offers the best opportunity to rapidly transition the new, basic USP technologies into industrial use.

The focus seminar “Basics and New Developments in Ultra Short Pulse Laser Technology” will continue to be held as part of the International Laser Technology Congress in the future. Fraunhofer ILT will be organizing a two-day USP workshop every odd-numbered year. The second ultra short pulsed laser workshop will take place from April 17 – 18, 2013. Registration for the event is already open on the website www.ultrakurzpulslaser.de.

Your contacts at Fraunhofer ILT
If you have any questions regarding this topic, please feel free to contact our expert:

Dr. Arnold Gillner
Phone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

PIKOFLAT project partners
Edgeware GmbH
Fraunhofer Institute for Laser Technology ILT
Lumera Laser GmbH
Sauer Lasertech GmbH
Saueressig GmbH & Co. KG
Schepers GmbH & Co. KG

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>