Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing productivity and optimizing processes when working materials using USP-lasers

11.03.2014

Pulsar Photonics GmbH, a spin-off of the Fraunhofer Institute for Laser Technology ILT, has developed a tool system that significantly boosts the cost effectiveness of using ultrashort pulsed techniques to process materials by turning to a multi-beam approach. Users can employ the integrated measurement sensors to calibrate the tool and establish parameters in advance of material processing as well as to assure quality once the work has been completed. The experts will be presenting their tool system and multi-beam scanner to the public for the first time at the Hannover Messe.

Over the past few years, the use of ultrashort pulsed lasers in material processing has been riding a wave of success. Reasons include the laser’s outstanding properties as well as the opportunity to process nearly any type of material with the highest degree of precision.


Recurring lettering imprinted on a steel foil using the multi-beam scanner.

Pulsar Photonics GmbH


Tool system made up of galvanometer and multi-beam scanner, camera and topography sensors.

Pulsar Photonics GmbH

Because the range of possible applications is continually expanding, market growth currently stands at between 20 and 25 percent per year. Typically, the technology is used in areas such as mould technology, cutting and drilling for micro components, sieves and filters, as well as thin-film coating for solar technologies and the manufacture of OLEDs. When it comes to micro structuring, however, today’s technology has often found itself pushed to its limits from an efficiency standpoint.

Cost-effective microstructuring with USP lasers

Because of these efficiency concerns, the current tool of choice for large-area surface microstructuring is the nanosecond laser (ns laser) – which has firmly established itself on the market thanks to impressive cost-efficiency.

The drawback is that the precision of the microstructuring is limited by the accompanying melt processes; components often require extensive reworking. By contrast, ultrashort pulsed laser produces surface structures that do not require any further processing. They are accurate to within a few micrometers laterally and to within a hundred nanometers in depth.

The dominant role of evaporation in the ablation process with USP lasers means that ablation rates are around a factor of 10 lower than they are with nanosecond lasers. From a business perspective, this has often made using USP lasers to mass produce micro components seem unattractive.

What is more, current USP laser systems generally cannot make use of more than 20 percent of the available laser energy in the 50 to 100 watt power range. In an effort to improve the efficiency of USP lasers in this range, researchers from Fraunhofer ILT have developed a technique that allows laser ablation to run in parallel. This multi-beam technology has now been thoroughly tested and enables the laser beam to be split up into more than 100 beamlets. As a result, a workpiece can be processed at 100 places at once, which speeds up the work process accordingly. The technology means that almost all of the capacity offered by current high-performance USP laser systems can be brought to bear on the workpiece.

An intelligently networked system

Pulsar Photonics GmbH, a Fraunhofer ILT spin-off, has developed a tool system that includes not only intelligent measurement technology but also the option to segment the beam. Beam segmentation essentially boosts the efficiency of workpiece processing itself; the system’s integrated measurement sensors simplify and automate both the definition of parameters during machine preparation and the monitoring of quality once the work has been completed.

As a result, the setup process takes far less time than it otherwise might. For instance, users can conduct initial machine preparation with the part already in the machine because its sensors help them to quickly determine which laser parameters will yield the best processing results. Quality assurance is immediate because the sensors show users how deep the microstructures are or the diameter of the holes drilled. In this way, contract manufacturers can hand the customer verified parts as soon as production is complete. The adaptable USP laser system can also be used for a variety of applications beyond surface structuring, including drilling and cutting by ablation.

Recurring structures and large-scale surface functionalization

Because of its design, the multi-beam technology is primarily suited to the manufacture of components that feature recurring patterns and set structural arrangements, or else for working on several components with the same structure simultaneously. And in many applications, this sort of repeating structure is exactly what is required – such as the large-scale functionalization of surfaces where the aim is to reduce friction or to produce thin-film masks and microfilters.

Hannover Messe

From April 7-11, 2014, the “young innovative companies” joint booth (Hall 17, booth C04/2) at the Hannover Messe will play host to the experts from Pulsar Photonics as they showcase their tool system and multi-beam scanner – now available commercially for the first time. They will be demonstrating how the system complements a range of applications. Scientists from Fraunhofer ILT will be at the joint Fraunhofer production booth (Hall 17/F14) to showcase techniques for functional coating and micro joining as well as to demonstrate the diverse applications of the ultrashort pulsed laser.

International Laser Technology Congress AKL’14

At AKL’14 in Aachen, Dipl.-Ing. Joachim Ryll of Pulsar Photonics GmbH will give a talk on how to improve efficiency when working materials using USP lasers by ensuring the best possible system setup. The talk will form part of the session “Ultrashort pulsed laser essentials – applications” and will take place on May 9, 2014.

About Pulsar Photonics GmbH

Founded in 2013, Pulsar Photonics GmbH is a technology-focused spin-off of the Fraunhofer Institute for Laser Technology ILT. The company’s services focus on the development and sales of integrated tool and measurement systems for material processing using short and ultra-short pulsed lasers.

Contact

Dipl.-Phys. Stephan Eifel
Pulsar Photonics GmbH
Phone +49 241 8906-8079
eifel@pulsar-photonics.de
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.pulsar-photonics.com
http://www.lasercongress.org
http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut

Further reports about: ILT Laser Lasertechnik Photonics Pulsar Technology USP USP-lasers lasers materials means measurement processing productivity

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>