Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing productivity and optimizing processes when working materials using USP-lasers

11.03.2014

Pulsar Photonics GmbH, a spin-off of the Fraunhofer Institute for Laser Technology ILT, has developed a tool system that significantly boosts the cost effectiveness of using ultrashort pulsed techniques to process materials by turning to a multi-beam approach. Users can employ the integrated measurement sensors to calibrate the tool and establish parameters in advance of material processing as well as to assure quality once the work has been completed. The experts will be presenting their tool system and multi-beam scanner to the public for the first time at the Hannover Messe.

Over the past few years, the use of ultrashort pulsed lasers in material processing has been riding a wave of success. Reasons include the laser’s outstanding properties as well as the opportunity to process nearly any type of material with the highest degree of precision.


Recurring lettering imprinted on a steel foil using the multi-beam scanner.

Pulsar Photonics GmbH


Tool system made up of galvanometer and multi-beam scanner, camera and topography sensors.

Pulsar Photonics GmbH

Because the range of possible applications is continually expanding, market growth currently stands at between 20 and 25 percent per year. Typically, the technology is used in areas such as mould technology, cutting and drilling for micro components, sieves and filters, as well as thin-film coating for solar technologies and the manufacture of OLEDs. When it comes to micro structuring, however, today’s technology has often found itself pushed to its limits from an efficiency standpoint.

Cost-effective microstructuring with USP lasers

Because of these efficiency concerns, the current tool of choice for large-area surface microstructuring is the nanosecond laser (ns laser) – which has firmly established itself on the market thanks to impressive cost-efficiency.

The drawback is that the precision of the microstructuring is limited by the accompanying melt processes; components often require extensive reworking. By contrast, ultrashort pulsed laser produces surface structures that do not require any further processing. They are accurate to within a few micrometers laterally and to within a hundred nanometers in depth.

The dominant role of evaporation in the ablation process with USP lasers means that ablation rates are around a factor of 10 lower than they are with nanosecond lasers. From a business perspective, this has often made using USP lasers to mass produce micro components seem unattractive.

What is more, current USP laser systems generally cannot make use of more than 20 percent of the available laser energy in the 50 to 100 watt power range. In an effort to improve the efficiency of USP lasers in this range, researchers from Fraunhofer ILT have developed a technique that allows laser ablation to run in parallel. This multi-beam technology has now been thoroughly tested and enables the laser beam to be split up into more than 100 beamlets. As a result, a workpiece can be processed at 100 places at once, which speeds up the work process accordingly. The technology means that almost all of the capacity offered by current high-performance USP laser systems can be brought to bear on the workpiece.

An intelligently networked system

Pulsar Photonics GmbH, a Fraunhofer ILT spin-off, has developed a tool system that includes not only intelligent measurement technology but also the option to segment the beam. Beam segmentation essentially boosts the efficiency of workpiece processing itself; the system’s integrated measurement sensors simplify and automate both the definition of parameters during machine preparation and the monitoring of quality once the work has been completed.

As a result, the setup process takes far less time than it otherwise might. For instance, users can conduct initial machine preparation with the part already in the machine because its sensors help them to quickly determine which laser parameters will yield the best processing results. Quality assurance is immediate because the sensors show users how deep the microstructures are or the diameter of the holes drilled. In this way, contract manufacturers can hand the customer verified parts as soon as production is complete. The adaptable USP laser system can also be used for a variety of applications beyond surface structuring, including drilling and cutting by ablation.

Recurring structures and large-scale surface functionalization

Because of its design, the multi-beam technology is primarily suited to the manufacture of components that feature recurring patterns and set structural arrangements, or else for working on several components with the same structure simultaneously. And in many applications, this sort of repeating structure is exactly what is required – such as the large-scale functionalization of surfaces where the aim is to reduce friction or to produce thin-film masks and microfilters.

Hannover Messe

From April 7-11, 2014, the “young innovative companies” joint booth (Hall 17, booth C04/2) at the Hannover Messe will play host to the experts from Pulsar Photonics as they showcase their tool system and multi-beam scanner – now available commercially for the first time. They will be demonstrating how the system complements a range of applications. Scientists from Fraunhofer ILT will be at the joint Fraunhofer production booth (Hall 17/F14) to showcase techniques for functional coating and micro joining as well as to demonstrate the diverse applications of the ultrashort pulsed laser.

International Laser Technology Congress AKL’14

At AKL’14 in Aachen, Dipl.-Ing. Joachim Ryll of Pulsar Photonics GmbH will give a talk on how to improve efficiency when working materials using USP lasers by ensuring the best possible system setup. The talk will form part of the session “Ultrashort pulsed laser essentials – applications” and will take place on May 9, 2014.

About Pulsar Photonics GmbH

Founded in 2013, Pulsar Photonics GmbH is a technology-focused spin-off of the Fraunhofer Institute for Laser Technology ILT. The company’s services focus on the development and sales of integrated tool and measurement systems for material processing using short and ultra-short pulsed lasers.

Contact

Dipl.-Phys. Stephan Eifel
Pulsar Photonics GmbH
Phone +49 241 8906-8079
eifel@pulsar-photonics.de
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.pulsar-photonics.com
http://www.lasercongress.org
http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut

Further reports about: ILT Laser Lasertechnik Photonics Pulsar Technology USP USP-lasers lasers materials means measurement processing productivity

More articles from Process Engineering:

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

nachricht Sustainable products: Fraunhofer LBF investigates recycling of halogen-free flame retardant
17.02.2016 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

World first demo of labyrinth magnetic-domain-optical Q-switched laser

28.07.2016 | Information Technology

New material could advance superconductivity

28.07.2016 | Materials Sciences

CO2 can be stored underground for 10 times the length needed to avoid climatic impact

28.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>