Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Increasing productivity and optimizing processes when working materials using USP-lasers


Pulsar Photonics GmbH, a spin-off of the Fraunhofer Institute for Laser Technology ILT, has developed a tool system that significantly boosts the cost effectiveness of using ultrashort pulsed techniques to process materials by turning to a multi-beam approach. Users can employ the integrated measurement sensors to calibrate the tool and establish parameters in advance of material processing as well as to assure quality once the work has been completed. The experts will be presenting their tool system and multi-beam scanner to the public for the first time at the Hannover Messe.

Over the past few years, the use of ultrashort pulsed lasers in material processing has been riding a wave of success. Reasons include the laser’s outstanding properties as well as the opportunity to process nearly any type of material with the highest degree of precision.

Recurring lettering imprinted on a steel foil using the multi-beam scanner.

Pulsar Photonics GmbH

Tool system made up of galvanometer and multi-beam scanner, camera and topography sensors.

Pulsar Photonics GmbH

Because the range of possible applications is continually expanding, market growth currently stands at between 20 and 25 percent per year. Typically, the technology is used in areas such as mould technology, cutting and drilling for micro components, sieves and filters, as well as thin-film coating for solar technologies and the manufacture of OLEDs. When it comes to micro structuring, however, today’s technology has often found itself pushed to its limits from an efficiency standpoint.

Cost-effective microstructuring with USP lasers

Because of these efficiency concerns, the current tool of choice for large-area surface microstructuring is the nanosecond laser (ns laser) – which has firmly established itself on the market thanks to impressive cost-efficiency.

The drawback is that the precision of the microstructuring is limited by the accompanying melt processes; components often require extensive reworking. By contrast, ultrashort pulsed laser produces surface structures that do not require any further processing. They are accurate to within a few micrometers laterally and to within a hundred nanometers in depth.

The dominant role of evaporation in the ablation process with USP lasers means that ablation rates are around a factor of 10 lower than they are with nanosecond lasers. From a business perspective, this has often made using USP lasers to mass produce micro components seem unattractive.

What is more, current USP laser systems generally cannot make use of more than 20 percent of the available laser energy in the 50 to 100 watt power range. In an effort to improve the efficiency of USP lasers in this range, researchers from Fraunhofer ILT have developed a technique that allows laser ablation to run in parallel. This multi-beam technology has now been thoroughly tested and enables the laser beam to be split up into more than 100 beamlets. As a result, a workpiece can be processed at 100 places at once, which speeds up the work process accordingly. The technology means that almost all of the capacity offered by current high-performance USP laser systems can be brought to bear on the workpiece.

An intelligently networked system

Pulsar Photonics GmbH, a Fraunhofer ILT spin-off, has developed a tool system that includes not only intelligent measurement technology but also the option to segment the beam. Beam segmentation essentially boosts the efficiency of workpiece processing itself; the system’s integrated measurement sensors simplify and automate both the definition of parameters during machine preparation and the monitoring of quality once the work has been completed.

As a result, the setup process takes far less time than it otherwise might. For instance, users can conduct initial machine preparation with the part already in the machine because its sensors help them to quickly determine which laser parameters will yield the best processing results. Quality assurance is immediate because the sensors show users how deep the microstructures are or the diameter of the holes drilled. In this way, contract manufacturers can hand the customer verified parts as soon as production is complete. The adaptable USP laser system can also be used for a variety of applications beyond surface structuring, including drilling and cutting by ablation.

Recurring structures and large-scale surface functionalization

Because of its design, the multi-beam technology is primarily suited to the manufacture of components that feature recurring patterns and set structural arrangements, or else for working on several components with the same structure simultaneously. And in many applications, this sort of repeating structure is exactly what is required – such as the large-scale functionalization of surfaces where the aim is to reduce friction or to produce thin-film masks and microfilters.

Hannover Messe

From April 7-11, 2014, the “young innovative companies” joint booth (Hall 17, booth C04/2) at the Hannover Messe will play host to the experts from Pulsar Photonics as they showcase their tool system and multi-beam scanner – now available commercially for the first time. They will be demonstrating how the system complements a range of applications. Scientists from Fraunhofer ILT will be at the joint Fraunhofer production booth (Hall 17/F14) to showcase techniques for functional coating and micro joining as well as to demonstrate the diverse applications of the ultrashort pulsed laser.

International Laser Technology Congress AKL’14

At AKL’14 in Aachen, Dipl.-Ing. Joachim Ryll of Pulsar Photonics GmbH will give a talk on how to improve efficiency when working materials using USP lasers by ensuring the best possible system setup. The talk will form part of the session “Ultrashort pulsed laser essentials – applications” and will take place on May 9, 2014.

About Pulsar Photonics GmbH

Founded in 2013, Pulsar Photonics GmbH is a technology-focused spin-off of the Fraunhofer Institute for Laser Technology ILT. The company’s services focus on the development and sales of integrated tool and measurement systems for material processing using short and ultra-short pulsed lasers.


Dipl.-Phys. Stephan Eifel
Pulsar Photonics GmbH
Phone +49 241 8906-8079
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

Petra Nolis | Fraunhofer-Institut

Further reports about: ILT Laser Lasertechnik Photonics Pulsar Technology USP USP-lasers lasers materials means measurement processing productivity

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>