Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing productivity and optimizing processes when working materials using USP-lasers

11.03.2014

Pulsar Photonics GmbH, a spin-off of the Fraunhofer Institute for Laser Technology ILT, has developed a tool system that significantly boosts the cost effectiveness of using ultrashort pulsed techniques to process materials by turning to a multi-beam approach. Users can employ the integrated measurement sensors to calibrate the tool and establish parameters in advance of material processing as well as to assure quality once the work has been completed. The experts will be presenting their tool system and multi-beam scanner to the public for the first time at the Hannover Messe.

Over the past few years, the use of ultrashort pulsed lasers in material processing has been riding a wave of success. Reasons include the laser’s outstanding properties as well as the opportunity to process nearly any type of material with the highest degree of precision.


Recurring lettering imprinted on a steel foil using the multi-beam scanner.

Pulsar Photonics GmbH


Tool system made up of galvanometer and multi-beam scanner, camera and topography sensors.

Pulsar Photonics GmbH

Because the range of possible applications is continually expanding, market growth currently stands at between 20 and 25 percent per year. Typically, the technology is used in areas such as mould technology, cutting and drilling for micro components, sieves and filters, as well as thin-film coating for solar technologies and the manufacture of OLEDs. When it comes to micro structuring, however, today’s technology has often found itself pushed to its limits from an efficiency standpoint.

Cost-effective microstructuring with USP lasers

Because of these efficiency concerns, the current tool of choice for large-area surface microstructuring is the nanosecond laser (ns laser) – which has firmly established itself on the market thanks to impressive cost-efficiency.

The drawback is that the precision of the microstructuring is limited by the accompanying melt processes; components often require extensive reworking. By contrast, ultrashort pulsed laser produces surface structures that do not require any further processing. They are accurate to within a few micrometers laterally and to within a hundred nanometers in depth.

The dominant role of evaporation in the ablation process with USP lasers means that ablation rates are around a factor of 10 lower than they are with nanosecond lasers. From a business perspective, this has often made using USP lasers to mass produce micro components seem unattractive.

What is more, current USP laser systems generally cannot make use of more than 20 percent of the available laser energy in the 50 to 100 watt power range. In an effort to improve the efficiency of USP lasers in this range, researchers from Fraunhofer ILT have developed a technique that allows laser ablation to run in parallel. This multi-beam technology has now been thoroughly tested and enables the laser beam to be split up into more than 100 beamlets. As a result, a workpiece can be processed at 100 places at once, which speeds up the work process accordingly. The technology means that almost all of the capacity offered by current high-performance USP laser systems can be brought to bear on the workpiece.

An intelligently networked system

Pulsar Photonics GmbH, a Fraunhofer ILT spin-off, has developed a tool system that includes not only intelligent measurement technology but also the option to segment the beam. Beam segmentation essentially boosts the efficiency of workpiece processing itself; the system’s integrated measurement sensors simplify and automate both the definition of parameters during machine preparation and the monitoring of quality once the work has been completed.

As a result, the setup process takes far less time than it otherwise might. For instance, users can conduct initial machine preparation with the part already in the machine because its sensors help them to quickly determine which laser parameters will yield the best processing results. Quality assurance is immediate because the sensors show users how deep the microstructures are or the diameter of the holes drilled. In this way, contract manufacturers can hand the customer verified parts as soon as production is complete. The adaptable USP laser system can also be used for a variety of applications beyond surface structuring, including drilling and cutting by ablation.

Recurring structures and large-scale surface functionalization

Because of its design, the multi-beam technology is primarily suited to the manufacture of components that feature recurring patterns and set structural arrangements, or else for working on several components with the same structure simultaneously. And in many applications, this sort of repeating structure is exactly what is required – such as the large-scale functionalization of surfaces where the aim is to reduce friction or to produce thin-film masks and microfilters.

Hannover Messe

From April 7-11, 2014, the “young innovative companies” joint booth (Hall 17, booth C04/2) at the Hannover Messe will play host to the experts from Pulsar Photonics as they showcase their tool system and multi-beam scanner – now available commercially for the first time. They will be demonstrating how the system complements a range of applications. Scientists from Fraunhofer ILT will be at the joint Fraunhofer production booth (Hall 17/F14) to showcase techniques for functional coating and micro joining as well as to demonstrate the diverse applications of the ultrashort pulsed laser.

International Laser Technology Congress AKL’14

At AKL’14 in Aachen, Dipl.-Ing. Joachim Ryll of Pulsar Photonics GmbH will give a talk on how to improve efficiency when working materials using USP lasers by ensuring the best possible system setup. The talk will form part of the session “Ultrashort pulsed laser essentials – applications” and will take place on May 9, 2014.

About Pulsar Photonics GmbH

Founded in 2013, Pulsar Photonics GmbH is a technology-focused spin-off of the Fraunhofer Institute for Laser Technology ILT. The company’s services focus on the development and sales of integrated tool and measurement systems for material processing using short and ultra-short pulsed lasers.

Contact

Dipl.-Phys. Stephan Eifel
Pulsar Photonics GmbH
Phone +49 241 8906-8079
eifel@pulsar-photonics.de
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.pulsar-photonics.com
http://www.lasercongress.org
http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut

Further reports about: ILT Laser Lasertechnik Photonics Pulsar Technology USP USP-lasers lasers materials means measurement processing productivity

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>