Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved Micro-Implants through Laser Sintering

04.10.2010
The Laser Zentrum Hannover e.V. (LZH) has started a new project which plans on using laser micro-sintering to change the surface of implants, for example to improve attachment to surrounding tissue or to deposit medications on the implant surface.

The Laser Zentrum Hannover e.V. (LZH) plans on using laser sintering* to improve the surface of micro-implants, for example for use in the circulatory system (stents), or in the eye, throat, nose, or ear.

The goal of a new research project is to produce a porous structure on chosen areas of an implant surface. On the one hand, this structure can improve attachment to the surrounding tissue, and on the other hand medication can be deposited there.

This is necessary, especially for extremely small implants, since integration into the surrounding tissue is limited, due to the small surface of the implant. Apart from that, the implant surface offers very little room for deposition of medications which can have a positive effect on acceptance of the implant in the human body, or for medications which can prevent infections.

"Laser sintering can be used to modify the implant surface in a very specific manner," explains Matthias Gieseke, engineer at the LZH. "We hope to make the optimal structure for a number of applications."

First of all, the requirements on the surface of the implant have to be defined, followed by investigations on generating the layers using laser sintering, and testing the structured implant. In the course of the project, automation and standardization of the laser sintering process and new materials and implants will also be developed.

The laser sintering project is in cooperation with the Institute for Biomedical Technology at the medical faculty of the University of Rostock, as part of the project "REMEDIS". REMEDIS is supported by the German Federal Ministry of Education and Research, with the goal of using micro-implants to improve the life quality of chronically ill people. The project manager is the Jülich Forschungszentrum.

*Laser sintering builds up a workpiece layer by layer, by melting a powdered material. The individual powder particles absorb the laser energy and are fused together. Almost any three-dimensional shape can be produced using laser sintering.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | idw
Further information:
http://www.lzh.de

Further reports about: LZH Laser Zentrum Hannover Micro-Implants laser system sintering

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>