Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved lubrication without oil

08.05.2012
Running nicely – this applies even more to aqueous biopolymer solutions than to oil. These solutions are used as a cooling lubricant for machining hard metals and for tool-making machinery on which tools are manufactured.

Metalworking plays a key role in industry. Drilling, milling, turning and grinding operations all use lubricants to prevent work pieces and tools from overheating and from excess wear. Standard lubricants today are based on mineral oil.


Dr. Peter Eisner, Dr. Michael Menner and Andreas Malberg. Developed a cooling lubricant from aqueous biopolymers. Astonishing the lubricant industry by finding: “Water lubricates like oil”. © Dirk Mahler / Fraunhofer

This has drawbacks: fossil mineral oils come from finite resources, transport relatively little heat away from the work piece, are harmful to health and are flammable. All of this calls for extreme technical efforts, for occupational safety, fire safety and disposal, for example. So there‘s a need for alternative lubricants.

Renewable raw materials as a lubricant additive

The idea hatched by Andreas Malberg, Dr. Peter Eisner and Dr. Michael Menner from the Fraunhofer Institute for Process Engineering and Packaging IVV in Freising sounds simple as well as surprising: lubricate with water, not oil. “At IVV here in Freising, we have been looking at the issue of cooling lubricants for some considerable time”, explains Michael Menner. “In two projects supported by the Federal Ministry of Education and Research, we have successfully replaced oil with water. One surprising thing we found was that water is no worse a lubricant than oil, the key to it all being the additives.” Adding natural polymers to water can dramatically improve its lubricating properties. The Freising-based researchers set about testing renewable raw materials such as celluloses, starches or bacterial polysaccharides and improving their use as lubricant additives. Their aim: to make water more viscous by adding biopolymers, so it lubricates better.

For the idea to become a marketable product, other partners were brought on board: the Institute for Machine Tool Engineering and Production Technology at the University of Braunschweig, and Carl Bechem GmbH - a lubricant manufacturer from Hagen, Germany. The basic fluid made by the IVV, the viscous water, was improved by adding water-soluble additives so it could be used as an anti-corrosion agent, for example. That‘s how it meets the requirements during processing: withstanding high temperatures and shearing stresses.

Benefits: Easy on the environment and on gentle to the skin, does not burn

In addition to the significantly lower impact on the environment and the high raw material efficiency, the new lubricant also offers technological benefits. It reduces wear and prolongs tool life, for example. The processed components are also easier to clean. This cuts costs and improves the cost-efficiency of the entire production process. Converting to the new lubricant is very easy for companies to carry out”, explains Peter Eisner. “In principle, once thoroughly cleaned, the same machine tool circulation systems can be used.” In addition, the use of the aqueous lubricant improves occupational health and safety and hygiene: no formation of oil mists, addition of fewer biocides, it smells better and is gentler on the skin.

For the mineral oil-free lubricant made of aqueous biopolymer solutions for use in metalworking applications, Dr. Peter Eisner, Dipl.-Ing. Andreas Malberg and Dr. Michael Menner will receive one of the 2012 Joseph-von-Fraunhofer awards. The newly developed lubricant is already being distributed by Carl Bechem GmbH under the product name of BERUFLUID and is in use in various metalworking companies in the manufacturing of tools, mechanical engineering, in the automotive and aviation industry and in medical technology.

Andreas Malberg | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/may/improved-lubrication-without-oil.html

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>