Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved lubrication without oil

08.05.2012
Running nicely – this applies even more to aqueous biopolymer solutions than to oil. These solutions are used as a cooling lubricant for machining hard metals and for tool-making machinery on which tools are manufactured.

Metalworking plays a key role in industry. Drilling, milling, turning and grinding operations all use lubricants to prevent work pieces and tools from overheating and from excess wear. Standard lubricants today are based on mineral oil.


Dr. Peter Eisner, Dr. Michael Menner and Andreas Malberg. Developed a cooling lubricant from aqueous biopolymers. Astonishing the lubricant industry by finding: “Water lubricates like oil”. © Dirk Mahler / Fraunhofer

This has drawbacks: fossil mineral oils come from finite resources, transport relatively little heat away from the work piece, are harmful to health and are flammable. All of this calls for extreme technical efforts, for occupational safety, fire safety and disposal, for example. So there‘s a need for alternative lubricants.

Renewable raw materials as a lubricant additive

The idea hatched by Andreas Malberg, Dr. Peter Eisner and Dr. Michael Menner from the Fraunhofer Institute for Process Engineering and Packaging IVV in Freising sounds simple as well as surprising: lubricate with water, not oil. “At IVV here in Freising, we have been looking at the issue of cooling lubricants for some considerable time”, explains Michael Menner. “In two projects supported by the Federal Ministry of Education and Research, we have successfully replaced oil with water. One surprising thing we found was that water is no worse a lubricant than oil, the key to it all being the additives.” Adding natural polymers to water can dramatically improve its lubricating properties. The Freising-based researchers set about testing renewable raw materials such as celluloses, starches or bacterial polysaccharides and improving their use as lubricant additives. Their aim: to make water more viscous by adding biopolymers, so it lubricates better.

For the idea to become a marketable product, other partners were brought on board: the Institute for Machine Tool Engineering and Production Technology at the University of Braunschweig, and Carl Bechem GmbH - a lubricant manufacturer from Hagen, Germany. The basic fluid made by the IVV, the viscous water, was improved by adding water-soluble additives so it could be used as an anti-corrosion agent, for example. That‘s how it meets the requirements during processing: withstanding high temperatures and shearing stresses.

Benefits: Easy on the environment and on gentle to the skin, does not burn

In addition to the significantly lower impact on the environment and the high raw material efficiency, the new lubricant also offers technological benefits. It reduces wear and prolongs tool life, for example. The processed components are also easier to clean. This cuts costs and improves the cost-efficiency of the entire production process. Converting to the new lubricant is very easy for companies to carry out”, explains Peter Eisner. “In principle, once thoroughly cleaned, the same machine tool circulation systems can be used.” In addition, the use of the aqueous lubricant improves occupational health and safety and hygiene: no formation of oil mists, addition of fewer biocides, it smells better and is gentler on the skin.

For the mineral oil-free lubricant made of aqueous biopolymer solutions for use in metalworking applications, Dr. Peter Eisner, Dipl.-Ing. Andreas Malberg and Dr. Michael Menner will receive one of the 2012 Joseph-von-Fraunhofer awards. The newly developed lubricant is already being distributed by Carl Bechem GmbH under the product name of BERUFLUID and is in use in various metalworking companies in the manufacturing of tools, mechanical engineering, in the automotive and aviation industry and in medical technology.

Andreas Malberg | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/may/improved-lubrication-without-oil.html

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>