Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High Speed Laser Soldering for Flexible Interconnection of Self-Bonding Copper Wires

29.10.2009
For manufacturing processes with small and medium quantities in the sectors of electrical, medical and sensor engineering, the Fraunhofer Institute for Laser Technology ILT has established an automated laser soldering process that significantly increases the flexibility as well as the process speed of production. In view of the progressing miniaturization of building groups, this process has great potential.

Manufacturing highly integrated, electro-engineering components in Europe primarily demands, in addition to high quality, a high amount of flexibility to remain competitive against the cost advantages found in low-wage countries. Manufacturing facilities have to be transferable to a wide variety of products, preferably without retooling.


Demonstrator component to solder self-bonding wires on circuit boards. Source: Fraunhofer ILT

In addition, quick, highly automated manufacturing procedures are necessary for largely unmanned manufacturing. Exposed to these requirements are small and medium-sized enterprises who occupy market segments for highly integrated electrical engineering components in small and medium quantities; such segments cannot be served by mass production facilities. Examples are innovative products from medical or sensor technology for which a significant production step is the interconnection of enamel-insulated coil wires to connection pads on a circuit board.

Currently, the interconnection is soldered manually for these products due to a lack of automation facilities. Since the process and the geometry of the component are complicated, the manufacturing process can only be reproduced with difficulty. The quality of the solder connection, thus, strongly depends upon the person conducting it. So that the insulating enamel layer is removed from the wire, the hot soldering iron has to be guided over the individual wire several times with a certain contact pressure - this way the insulating enamel melts and the bare wire surface contacts the liquid solder immediately. This method is not only time consuming, but also harbors a danger: the section of wire to be connected can tear when very thin self-bonding wires, e.g.
To increase the process speed and reproducibility, the Fraunhofer ILT has developed an automated laser soldering process that not only enhances the manufacturing flexibility, but also offers great potential for further miniaturization. With this process, the enamel removal and the interconnection take place in one single process step. On the one hand, the reproducibility is significantly increased via integrated process monitoring and control based on pyrometric sensors used in the laser-beam soldering process. On the other, the contactless laser soldering process offers significant potential for miniaturization in comparison to competing processes, since the dimensions of the connecting pads can be reduced down to several hundred micrometers.

This automated soldering process allows not only a nearly free choice of connection geometries, but also makes manufacturing so flexible that any number of quantities - even individual parts - can be produced without increasing reaction time, as a particular product requires. Medium-sized companies in the sector of electronic manufacturing can clearly fall back on the expertise of the Fraunhofer ILT.

Contact Partners at Fraunhofer ILT
Our experts would be glad to answer any questions you may have:
Dipl.-Ing. Felix Schmitt
Department of Microtechnology
Telephone +49 241 8906-322
felix.schmitt@ilt.fraunhofer.de
Dr. Arnold Gillner
Head, Department of Microtechnology
Telephone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen
Germany
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.ilt.fraunhofer.de
http://www.ilt.fraunhofer.de/eng/100000.html

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>