Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New High Power Infrared Emitters Help To Produce Innovative Pipelines

02.11.2009
QRC® Infrared Emitters with Nano Reflectors for New Technology
  • Infrared emitters transfer heat without contact
  • New QRC® emitters with nano reflectors improve automated heating processes
  • Infrared emitters from Heraeus Noblelight help to manufacture pipe at point of use, allowing faster installation, shorter project lead times and higher pressure ratings

High power infrared emitters from Heraeus Noblelight, fitted with newly developed opaque quartz reflectors, are helping to ensure the bonding of a high-tech polypropylene composite coating on pipeline manufactured using an innovative pipeline construction technology. The custom-built shortwave infrared system is pyrometer controlled to ±3ºC and is moved around the pipe to allow the infrared heaters to be located as close as possible to the pipe surface.

Traditionally, pipeline for the oil and gas sector is manufactured in lengths of 40 ft (12m), with typical wall thickness around 15mm. Completed pipelengths are next sent to pipe coating yards and then transported to site where they are butt-welded together.

The new pipeline construction technology, X200, from Pipestream Inc, a portfolio company of Shell Technology Ventures Fund 1, relies on using a thin-walled pipe for fluid containment, with the pipe’s hoop strength being conferred by strips of martensitic steel which are helically wound around the thin-walled pipe, at diameters up to 24 inch. The assembly is then coated with a suitable coating material, such as polyolefin tape. Pipe manufacture, including coating, is a continuous process producing continuous pipe lengths in excess of 450m. The individual manufacturing stages are fitted within standard ISO containers, so that pipe manufacture can be carried out at point of use, allowing faster installation, shorter project lead times and higher pressure ratings. To date 6 inch diameter pipes having been manufactured subjected to pressure, bursting at 300 bar.

The manufacturing process is a three-stage one. First stainless steel is formed and welded to create the inner liner. The martensitic steel strip is then helically wound on and fixed to the liner by an adhesive. Formerly, this adhesive was cured using high power infrared but latest versions of the technology use an adhesive which cures at ambient temperatures. Finally, a polyolefin tape is helically applied, both for insulation and for corrosion protection. This is bonded to the pipe by an adhesive, and the high power infrared heaters are used to heat the pipe before the coating tape with its adhesive is applied. As the coating tape is a thermal insulator, it is not possible to cure the adhesive through the coating. However, one pair of heaters heats the tape itself to maintain flexibility. There are three pairs of high power short wave heaters arranged around the pipe circumference. These are rotated to match the winding speed and they are zone-controlled by pyrometers to provide hold temperatures to ±3ºC to ensure adhesive curing and to avoid bubbling or over-softening of the coating tape.

The newly developed QRC® infrared emitters used in this application provide high energy short wave radiation rapidly and responsively. Their new quartz reflective coating has a special nano- and micro-structure which provide the reflector with very high diffusion characteristics to ensure the stability of process parameters, such as temperature and coating homogeneity. The emitters operate at around 2000ºC with a power density of 300 kW/m2, enabling them to provide very large amounts of heat rapidly and efficiently to exactly the point of use.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology and market leaders in the production of speciality light sources. In 2008, Heraeus Noblelight had an annual turnover of 92.5 Million € and employed 735 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with over 155 years of tradition. Our businesses include precious metals, sensors, dental and medical products, quartz glass, and specialty lighting sources. With product revenues approaching € 3 billion and precious metal trading revenues of € 13 billion, as well as over 13,000 employees in more than 110 companies worldwide, Heraeus holds a leading position in its global markets.

More information about the Pipestream technology can be found on www.pipestream.com.


Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
phone +49 6181/35-8545, fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com

Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
phone +49 6181/35-8547, fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.pipestream.com
http://www.heraeus-noblelight.com

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>