Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New High Power Infrared Emitters Help To Produce Innovative Pipelines

02.11.2009
QRC® Infrared Emitters with Nano Reflectors for New Technology
  • Infrared emitters transfer heat without contact
  • New QRC® emitters with nano reflectors improve automated heating processes
  • Infrared emitters from Heraeus Noblelight help to manufacture pipe at point of use, allowing faster installation, shorter project lead times and higher pressure ratings

High power infrared emitters from Heraeus Noblelight, fitted with newly developed opaque quartz reflectors, are helping to ensure the bonding of a high-tech polypropylene composite coating on pipeline manufactured using an innovative pipeline construction technology. The custom-built shortwave infrared system is pyrometer controlled to ±3ºC and is moved around the pipe to allow the infrared heaters to be located as close as possible to the pipe surface.

Traditionally, pipeline for the oil and gas sector is manufactured in lengths of 40 ft (12m), with typical wall thickness around 15mm. Completed pipelengths are next sent to pipe coating yards and then transported to site where they are butt-welded together.

The new pipeline construction technology, X200, from Pipestream Inc, a portfolio company of Shell Technology Ventures Fund 1, relies on using a thin-walled pipe for fluid containment, with the pipe’s hoop strength being conferred by strips of martensitic steel which are helically wound around the thin-walled pipe, at diameters up to 24 inch. The assembly is then coated with a suitable coating material, such as polyolefin tape. Pipe manufacture, including coating, is a continuous process producing continuous pipe lengths in excess of 450m. The individual manufacturing stages are fitted within standard ISO containers, so that pipe manufacture can be carried out at point of use, allowing faster installation, shorter project lead times and higher pressure ratings. To date 6 inch diameter pipes having been manufactured subjected to pressure, bursting at 300 bar.

The manufacturing process is a three-stage one. First stainless steel is formed and welded to create the inner liner. The martensitic steel strip is then helically wound on and fixed to the liner by an adhesive. Formerly, this adhesive was cured using high power infrared but latest versions of the technology use an adhesive which cures at ambient temperatures. Finally, a polyolefin tape is helically applied, both for insulation and for corrosion protection. This is bonded to the pipe by an adhesive, and the high power infrared heaters are used to heat the pipe before the coating tape with its adhesive is applied. As the coating tape is a thermal insulator, it is not possible to cure the adhesive through the coating. However, one pair of heaters heats the tape itself to maintain flexibility. There are three pairs of high power short wave heaters arranged around the pipe circumference. These are rotated to match the winding speed and they are zone-controlled by pyrometers to provide hold temperatures to ±3ºC to ensure adhesive curing and to avoid bubbling or over-softening of the coating tape.

The newly developed QRC® infrared emitters used in this application provide high energy short wave radiation rapidly and responsively. Their new quartz reflective coating has a special nano- and micro-structure which provide the reflector with very high diffusion characteristics to ensure the stability of process parameters, such as temperature and coating homogeneity. The emitters operate at around 2000ºC with a power density of 300 kW/m2, enabling them to provide very large amounts of heat rapidly and efficiently to exactly the point of use.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology and market leaders in the production of speciality light sources. In 2008, Heraeus Noblelight had an annual turnover of 92.5 Million € and employed 735 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with over 155 years of tradition. Our businesses include precious metals, sensors, dental and medical products, quartz glass, and specialty lighting sources. With product revenues approaching € 3 billion and precious metal trading revenues of € 13 billion, as well as over 13,000 employees in more than 110 companies worldwide, Heraeus holds a leading position in its global markets.

More information about the Pipestream technology can be found on www.pipestream.com.


Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
phone +49 6181/35-8545, fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com

Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
phone +49 6181/35-8547, fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.pipestream.com
http://www.heraeus-noblelight.com

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>