Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Harnessing randomness to improve lasers

Developed at A*STAR, the first electrically pumped random lasers for mid-infrared radiation are set to enable applications in sensing and imaging

Randomly arranged items usually have poor optical properties. The rough—or random—surface of a frosted-glass window, for example, obscures the view of an object.

Computed optical light fields in a random laser overlaid on black circles, which represent the nanoholes drilled into a semiconductor quantum cascade laser, to produce a laser pattern with low spatial coherence.

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

The optical industry therefore expends considerable effort reducing any surface irregularities in optical devices to avoid the uncontrollable scattering of light characteristic of random structures.

But now, a research group led by Ying Zhang from the A*STAR Singapore Institute of Manufacturing Technology (SIMTech) has made good use of randomness by studying how random structures can improve the performance of lasers. Together with a team led by Qijie Wang at Nanyang Technical University in Singapore, the group has demonstrated the world’s first electrically pumped mid-infrared random laser, which operates at a 10-micrometer wavelength. The laser is as bright as conventional diode lasers but produces less-speckled images.

Light waves from a conventional laser oscillate in perfect synchronicity, across both time and space. Perfect alignment of the light waves at different time and different locations across the beam profile is known as temporal and spatial coherence, respectively. When a laser illuminates a surface, a speckled pattern is typically visible, which indicates spatial coherence. The speckles result from the laser beam reflecting from different parts of the surface. Because the waves are in sync, they create spatial interference effects in the eye of an observer. This distortion is undesirable, particularly in biomedical imaging applications conducted in the infrared region of the spectrum.

Random lasers are the solution to this type of distortion, says Zhang. “Random lasers show the same high temporal coherence as that of other lasers but have a lower spatial coherence,” he explains. “High temporal coherence gives the desirable brightness but it is the low spatial coherence that removes the speckles caused by interferences.”

To realize a random laser in the mid-infrared spectrum, Zhang and co-workers used a semiconductor quantum cascade laser into which they had drilled a random pattern of nanoholes. At a sufficiently high density, these holes prevent the formation of a regular laser pattern within the semiconductor (see image). Instead, the pattern of a random laser forms, with low spatial coherence.

Employing a quantum cascade laser to realize the random lasers allows for the polarization of the laser light perpendicular to the laser surface. This propagation minimizes losses owing to the air-hole structure.

The research team’s wafer-fabrication competencies enabled them to drill holes deep enough into the laser chip, with sufficiently smooth side walls to minimize losses in the laser itself. By introducing these perfections and overcoming a number of other practical hurdles, Zhang and his colleagues succeeded in making the lasers efficient enough to provide lasing during electrical operation.

Nevertheless, notes Hou Kun Liang of SIMTech, who invented the mid-infrared random laser, more work is needed to bring random lasers to market. “We are working on a random laser that operates at room temperature. And in the long-term, we plan to extend random lasers from the infrared to even longer wavelengths and can be used for inspection of various polymer packaging quality-control of printed electronics, biomedical imaging, among other applications.”

About the Singapore Institute of Manufacturing Technology

The A*STAR Singapore Institute of Manufacturing Technology (SIMTech) develops high-value manufacturing technology and human capital to contribute to the competitiveness of Singapore’s industry. It collaborates with universities as well as multinational and local companies in the precision engineering, electronics, semiconductor, medical technology, aerospace, automotive, marine, logistics and other sectors.

Journal information

Liang, H. K., Meng, B., Liang, G., Tao, J., Chong, Y., Wang, Q. J. & Zhang, Y. Electrically pumped mid-infrared random lasers. Advanced Materials 25, 6859—6863 (2013).

A*STAR Research | Research asia research news
Further information:

More articles from Process Engineering:

nachricht Nanopores could take the salt out of seawater
12.11.2015 | University of Illinois at Urbana-Champaign

nachricht Coking of fluid fuels - New procedure shall analyze and avoid reasons
06.11.2015 | Oel-Waerme-Institut GmbH

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>