Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next-generation antireflection coatings could improve solar photovoltaic cell efficiency

29.10.2012
Photovoltaic cell efficiency may soon get a big boost, thanks to next-generation antireflection coatings crafted from nanomaterials capable of cutting down on the amount of light reflected away from a cell's surface.

Materials boasting a "tunable" refractive index have been developed within the past few years, and they show tremendous potential for photovoltaic applications. Professor E. Fred Schubert, of Rensselaer Polytechnic Institute's Department of Electrical, Computer, and Systems Engineering, is investigating ways to exploit this newly gained controllability and will present his findings at the upcoming AVS 59th International Symposium and Exhibition, held Oct. 28 - Nov. 2, in Tampa, Fla.

The refractive index is the property of a material that changes the speed of light, and is computed as the ratio of the speed of light in a vacuum to the speed of light through the material. Among the most fundamental properties of optical materials, the refractive index determines important optical characteristics such as Fresnel reflection, Bragg reflection, Snell refraction, diffraction, and the phase and group velocity of light.

Air and other gases have a refractive index very close to 1.0, but unfortunately aren't viable for thin-film optoelectronic applications. Among transparent dense materials suitable for use in thin-film optoelectronic applications, magnesium fluoride (MgF2) has the lowest refractive index (n=1.39); no dense materials with a lower refractive index are known to exist.

In fact, for many years the range between 1.0 and 1.39 remained unexplored. But with the advent of tunable-refractive-index materials, that's changing. Schubert's research is based on tailoring transparent thin-film materials whose refractive index can be controlled.

"Optical thin-film materials with a refractive index as low as 1.05 have been demonstrated. Tunable-refractive-index materials are based on 'nanoporous' silicon dioxide (SiO2), indium-tin oxide (ITO), and titanium dioxide (TiO2), and we can precisely control porosity by using oblique-angle deposition – a technique in which the substrate is at non-normal angle of incidence with respect to the deposition source," says Schubert.

Schubert and colleagues used these materials to design and fabricate a four-layer antireflection coating. "The fabrication process of this coating is additive and purely physical, so it's fully compatible with current manufacturing processes of solar cells," he notes. "Our customizable approach readily lends itself to the incorporation of antireflection coating design into solar cell device structures for application-specific requirements."

This four-layer antireflection coating is viable, readily applicable, and shows great promise for future generations of antireflection coating technology on solar cell devices.

MORE INFORMATION ABOUT THE AVS 59th INTERNATIONAL SYMPOSIUM & EXHIBITION

The Tampa Convention Center is located along the Riverwalk in the heart of downtown Tampa at 333 S. Franklin St., Tampa, Florida, 33602.

USEFUL LINKS:

Main meeting website: http://www2.avs.org/symposium/AVS59/pages/greetings.html

Technical Program: http://www.avssymposium.org/

Housing and Travel Information: http://www2.avs.org/symposium/AVS59/pages/housing_travel.html

PRESS REGISTRATION

The AVS Pressroom will be located in the Tampa Convention Center. Your complimentary media badge will allow you to utilize the pressroom to write, interview, collect new product releases, review material, or just relax. The media badge will also admit you, free of charge, into the exhibit area, lectures, and technical sessions, as well as the Welcome Mixer on Monday evening and the Awards Ceremony and Reception on Wednesday night. Pressroom hours are Monday-Thursday, 8-5 p.m.

To register, please contact:

Della Miller, AVS
E-mail: della@avs.org
This news release was prepared for AVS by the American Institute of Physics (AIP).

ABOUT AVS

Founded in 1953, AVS is a not-for-profit professional society that promotes communication between academia, government laboratories, and industry for the purpose of sharing research and development findings over a broad range of technologically relevant topics. Its symposia and journals provide an important forum for the dissemination of information in many areas of science and technology, enabling a critical gateway for the rapid insertion of scientific breakthroughs into manufacturing realities.

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>