Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fuel from market waste

01.02.2012
Mushy tomatoes, brown bananas and overripe cherries – to date, waste from wholesale markets has ended up on the compost heap at best. In future it will be put to better use: Researchers have developed a new facility that ferments this waste to make methane, which can be used to power vehicles.

Drivers who fill up with natural gas instead of gasoline or diesel spend less on fuel and are more environmentally friendly. Natural gas is kinder on the wallet, and the exhaust emissions it produces contain less carbon dioxide and almost no soot particles. As a result, more and more motorists are converting their gasoline engines to run on natural gas. But just like oil, natural gas is also a fossil fuel, and reserves are limited.


This plant in Stuttgart makes biogas out of waste from wholesale markets. © Fraunhofer IGB

Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart have now developed an alternative: They have found a way to obtain this fuel not from the Earth’s precious reserves of raw materials, but from fruit and vegetable waste generated by wholesale markets, university cafeterias and canteens. Fermenting this food waste produces methane, also known as biogas, which can be compressed into high-pressure cylinders and used as fuel.

In early 2012, the researchers will begin operating a pilot plant adjacent to Stuttgart’s wholesale market. The facility uses various microorganisms to generate sought-after methane from the food waste in a two-stage digestion process that lasts just a few days. “The waste contains a lot of water and has a very low lignocellulose content, so it’s highly suitable for rapid fermentation,” says Dr.-Ing. Ursula Schließmann, head of department at the IGB. But it still presents a challenge, because its precise composition varies every day. Sometimes it has a high proportion of citrus fruits, while other times there are more cherries, plums and lettuce. On days with a higher citrus fruit content, the researchers have to adjust the pH value through substrate management, because these fruits are very acidic. “We hold the waste in several storage tanks, where a number of parameters are automatically calculated – including the pH value. The specially designed management system determines exactly how many liters of waste from which containers should be mixed together and fed to the microorganisms,” explains Schließmann. It is vital that a correct balance be maintained in the plant at all times, because the various microorganisms require constant environmental conditions to do their job.

Another advantage of the new plant lies in the fact that absolutely everything it generates can be utilized; the biogas, the liquid filtrate, and even the sludgy residue that cannot be broken down any further. A second sub-project in Reutlingen comes into its own here, involving the cultivation of algae. When the algae in question are provided with an adequate culture medium, as well as carbon dioxide and sunlight, they produce oil in their cells that can be used to power diesel engines. The filtrate water from the biogas plant in Stuttgart contains sufficient nitrogen and phosphorus to be used as a culture medium for these algae, and the reactor facility also provides the researchers with the carbon dioxide that the algae need in order to grow; while the desired methane makes up around two thirds of the biogas produced there, some 30 percent of it is carbon dioxide. With these products put to good use, all that is left of the original market waste is the sludgy fermentation residue, which is itself converted into methane by colleagues at the Paul Scherrer Institute in Switzerland and at the Karlsruhe Institute of Technology.

Others involved in this network project, which goes by the name of ETAMAX, include energy company EnBW Energie Baden-Württemberg and Daimler AG. The former uses membranes to process the biogas generated in the market-place plant, while the latter supplies a number of experimental vehicles designed to run on natural gas. The five-year project is funded to the tune of six million euros by the German Federal Ministry of Education and Research (BMBF). If all the different components mesh together as intended, it is possible that similar plants could in future spring up wherever large quantities of organic waste are to be found. Other project partners are the Fraunhofer Institute for Process Engineering and Packaging IVV in Freising, FairEnergie GmbH, Netzsch Mohnopumpen GmbH, Stulz Wasser- und Prozesstechnik GmbH, Subitec GmbH und the town Stuttgart.

Dr.-Ing. Ursula Schließmann | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/february/fuel-from-market-waste.html

Further reports about: Ferchau Engineering Fuel cells IGB carbon dioxide natural gas raw material

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>