Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fraunhofer IFAM develops continuous 3D printing for mass production


Three-dimensional printing of polymer, metal or ceramic components is an additive manufacturing technology and enables the manufacture of individual and complex products for a variety of applications. Up to now, this manufacturing process has been a batch process and has required costly maintenance.

Sponsored by the Volkswagen Foundation, scientists at the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM have developed a new production line which facilitates a continuous and automated operation for liquid synthetic materials. The first components for the consumer sector have already been manufactured.

Continuous manufacture using the layer-by-layer principle for synthetic materials

(© Fraunhofer IFAM/Thorsten Müller)

Powder-based continuous procedures already exist. However, the manufacturing principle cannot be transferred to liquid materials as they are used in the stereolithography process. During conventional stereolithography, selected areas of each layer are cured by radiation of UV light.

This process is repeated layer by layer until the corresponding number of layers for the construction of the components has been completed. The elements are subsequently removed from the installation space, which is then set up again. This is a complex procedure which currently stands as an obstacle to mass production and also demands highly qualified staff.

Continuous manufacture using the layer-by-layer principle

The newly developed process uses the technology of continuous photopolymerisation based on the digital light processing system for the layer-by-layer manufacture of components. The significant difference compared with the usual production systems for additive manufacturing is that this new approach uses a rotating cylinder as the substrate and the flat platform is simply omitted.

The lower part of this cylinder is submerged in a liquid polymer in the process and is illuminated by multiple light sources at an exactly defined and increasing range. This is necessary in order that the polymer can selectively be cured on the surface of the cylinder in different areas at various stages.

As the cylinder gradually rotates, a three-dimensional component is built-up layer by layer on the submerged part of the cylinder. The manufactured components on the top of the cylinder can automatically be detached from the surface. The substrate surface is then ready again and the process can fully proceed.

Continuous manufacture is a great advantage particularly in view of the use of resources, as complete components constantly leave the production line and therefore operations are stabilised and thus improved. Up to now, the production cycle times of the traditional additive manufacturing procedures have been incomparable with conventional production lines of mass production.

The approach of the Fraunhofer IFAM researchers is directed towards cost-effective individual mass production and will significantly improve the economic efficiency of the additive manufacturing technique.

Funding Bodies
Sponsored by the Volkswagen Foundation, file number: 87473

Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM
Juan Isaza M.Eng.
Telephone +49 421 2246-180

Weitere Informationen:

Martina Ohle | Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>