Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IFAM develops continuous 3D printing for mass production

25.02.2015

Three-dimensional printing of polymer, metal or ceramic components is an additive manufacturing technology and enables the manufacture of individual and complex products for a variety of applications. Up to now, this manufacturing process has been a batch process and has required costly maintenance.

Sponsored by the Volkswagen Foundation, scientists at the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM have developed a new production line which facilitates a continuous and automated operation for liquid synthetic materials. The first components for the consumer sector have already been manufactured.


Continuous manufacture using the layer-by-layer principle for synthetic materials

(© Fraunhofer IFAM/Thorsten Müller)

Powder-based continuous procedures already exist. However, the manufacturing principle cannot be transferred to liquid materials as they are used in the stereolithography process. During conventional stereolithography, selected areas of each layer are cured by radiation of UV light.

This process is repeated layer by layer until the corresponding number of layers for the construction of the components has been completed. The elements are subsequently removed from the installation space, which is then set up again. This is a complex procedure which currently stands as an obstacle to mass production and also demands highly qualified staff.

Continuous manufacture using the layer-by-layer principle

The newly developed process uses the technology of continuous photopolymerisation based on the digital light processing system for the layer-by-layer manufacture of components. The significant difference compared with the usual production systems for additive manufacturing is that this new approach uses a rotating cylinder as the substrate and the flat platform is simply omitted.

The lower part of this cylinder is submerged in a liquid polymer in the process and is illuminated by multiple light sources at an exactly defined and increasing range. This is necessary in order that the polymer can selectively be cured on the surface of the cylinder in different areas at various stages.

As the cylinder gradually rotates, a three-dimensional component is built-up layer by layer on the submerged part of the cylinder. The manufactured components on the top of the cylinder can automatically be detached from the surface. The substrate surface is then ready again and the process can fully proceed.

Continuous manufacture is a great advantage particularly in view of the use of resources, as complete components constantly leave the production line and therefore operations are stabilised and thus improved. Up to now, the production cycle times of the traditional additive manufacturing procedures have been incomparable with conventional production lines of mass production.

The approach of the Fraunhofer IFAM researchers is directed towards cost-effective individual mass production and will significantly improve the economic efficiency of the additive manufacturing technique.

Funding Bodies
Sponsored by the Volkswagen Foundation, file number: 87473

Contact
Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM
Juan Isaza M.Eng.
Telephone +49 421 2246-180
juan.isaza.paz@ifam.fraunhofer.de

Weitere Informationen:

http://www.ifam.fraunhofer.de

Martina Ohle | Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>