Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer FEP introduces arcPECVD: A novel roll-to-roll PECVD process with very high coating rates

11.06.2013
Layers can be deposited in a highly productive way at a coating rate of more than 2000 nm ∙ m/min with the newly developed arcPECVD process. Potential fields of application are layer systems with optical functionalities or permeation barriers on polymer films.
Scientists at the Fraunhofer Institute for Electron Beam and Plasma Technology FEP have developed a novel vacuum coating process which in addition to the existing vacuum processes such as magnetron sputtering and high-rate evaporation makes the deposition of new layer systems and materials with very high coating rates possible.

In the hollow cathode arc PECVD process (short: arcPECVD) a reactive gas, such as hexamethyldisiloxane (HMDSO), enters the reaction chamber and is effectively excited, ionized and decomposed by means of hollow cathode arc plasma. Through this process a siliceous layer is deposited on the substrate. Depending on the process parameters comparatively soft and elastic plasma polymeric layers but also inorganic, more rigid and dense layers can be achieved.

Highly productive vacuum coating process of Fraunhofer FEP

For instance, in order to build a permeation barrier usually a layer stack is used, where a relatively thick, elastic smoothening layer is embedded in between the actual functional layers. So far, hitherto existing PECVD processes have not been feasible enough for the deposition of these interlayers due to their low coating rates. As alternatives lacquering processes have been used, which however require the transfer out off and back into the vacuum chamber. With the arcPECVD process a tool is now available, which is predestined for these applications and which can be applied in-line with other PVD processes.

The process, which is carried out at the low pressure of 0.1 … 5 Pa, can be effortlessly combined in a coating system with other PVD processes such as magnetron sputtering or electron beam deposition. This makes it possible to apply entire layer stacks in-line in only one vacuum run in roll-to-roll systems: this results in enormous savings in terms of time and money. The arcPECVD process was developed at the Fraunhofer FEP using the institute’s very own plasma sources and demonstrates good process stability. During a coating time of more than 2.5 hours, a constantly high coating rate of 2000 nm ∙ m/min ± 1.5 % could be achieved.

The Fraunhofer FEP’s hollow cathode plasma sources have already been approved in the industrial sector. They have been in use in the production of packaging films in widths of up to 2.85 meters for the past five years.

Dr. Steffen Günther, a specialist for PECVD processes at Fraunhofer FEP, sees enormous application potential for the arcPECVD: “We have already been able to show that PECVD layers are able to significantly reduce the layer stress in optical layer stacks. I see a great potential for example in the combination of the arcPECVD with the electron beam deposition of titanium oxide which would allow the highly productive – and as a result cost-effective – production of optical layer systems. Other application areas are permeation barriers for photovoltaic modules and organic electronics. The arcPECVD process is ready and waiting to be adapted to specific layer and customer demands within the framework of joint development projects with partners from both the industrial and research sectors.”
More information can be found under:
http://www.fep.fraunhofer.de

Press contact:
Annett Arnold, M.Sc.
Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Gemany | www.fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>