Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fraunhofer FEP introduces arcPECVD: A novel roll-to-roll PECVD process with very high coating rates

Layers can be deposited in a highly productive way at a coating rate of more than 2000 nm ∙ m/min with the newly developed arcPECVD process. Potential fields of application are layer systems with optical functionalities or permeation barriers on polymer films.
Scientists at the Fraunhofer Institute for Electron Beam and Plasma Technology FEP have developed a novel vacuum coating process which in addition to the existing vacuum processes such as magnetron sputtering and high-rate evaporation makes the deposition of new layer systems and materials with very high coating rates possible.

In the hollow cathode arc PECVD process (short: arcPECVD) a reactive gas, such as hexamethyldisiloxane (HMDSO), enters the reaction chamber and is effectively excited, ionized and decomposed by means of hollow cathode arc plasma. Through this process a siliceous layer is deposited on the substrate. Depending on the process parameters comparatively soft and elastic plasma polymeric layers but also inorganic, more rigid and dense layers can be achieved.

Highly productive vacuum coating process of Fraunhofer FEP

For instance, in order to build a permeation barrier usually a layer stack is used, where a relatively thick, elastic smoothening layer is embedded in between the actual functional layers. So far, hitherto existing PECVD processes have not been feasible enough for the deposition of these interlayers due to their low coating rates. As alternatives lacquering processes have been used, which however require the transfer out off and back into the vacuum chamber. With the arcPECVD process a tool is now available, which is predestined for these applications and which can be applied in-line with other PVD processes.

The process, which is carried out at the low pressure of 0.1 … 5 Pa, can be effortlessly combined in a coating system with other PVD processes such as magnetron sputtering or electron beam deposition. This makes it possible to apply entire layer stacks in-line in only one vacuum run in roll-to-roll systems: this results in enormous savings in terms of time and money. The arcPECVD process was developed at the Fraunhofer FEP using the institute’s very own plasma sources and demonstrates good process stability. During a coating time of more than 2.5 hours, a constantly high coating rate of 2000 nm ∙ m/min ± 1.5 % could be achieved.

The Fraunhofer FEP’s hollow cathode plasma sources have already been approved in the industrial sector. They have been in use in the production of packaging films in widths of up to 2.85 meters for the past five years.

Dr. Steffen Günther, a specialist for PECVD processes at Fraunhofer FEP, sees enormous application potential for the arcPECVD: “We have already been able to show that PECVD layers are able to significantly reduce the layer stress in optical layer stacks. I see a great potential for example in the combination of the arcPECVD with the electron beam deposition of titanium oxide which would allow the highly productive – and as a result cost-effective – production of optical layer systems. Other application areas are permeation barriers for photovoltaic modules and organic electronics. The arcPECVD process is ready and waiting to be adapted to specific layer and customer demands within the framework of joint development projects with partners from both the industrial and research sectors.”
More information can be found under:

Press contact:
Annett Arnold, M.Sc.
Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP
Phone +49 351 2586-452
Winterbergstraße 28 | 01277 Dresden | Gemany |

Annett Arnold | Fraunhofer-Institut
Further information:

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>