Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer FEP introduces arcPECVD: A novel roll-to-roll PECVD process with very high coating rates

11.06.2013
Layers can be deposited in a highly productive way at a coating rate of more than 2000 nm ∙ m/min with the newly developed arcPECVD process. Potential fields of application are layer systems with optical functionalities or permeation barriers on polymer films.
Scientists at the Fraunhofer Institute for Electron Beam and Plasma Technology FEP have developed a novel vacuum coating process which in addition to the existing vacuum processes such as magnetron sputtering and high-rate evaporation makes the deposition of new layer systems and materials with very high coating rates possible.

In the hollow cathode arc PECVD process (short: arcPECVD) a reactive gas, such as hexamethyldisiloxane (HMDSO), enters the reaction chamber and is effectively excited, ionized and decomposed by means of hollow cathode arc plasma. Through this process a siliceous layer is deposited on the substrate. Depending on the process parameters comparatively soft and elastic plasma polymeric layers but also inorganic, more rigid and dense layers can be achieved.

Highly productive vacuum coating process of Fraunhofer FEP

For instance, in order to build a permeation barrier usually a layer stack is used, where a relatively thick, elastic smoothening layer is embedded in between the actual functional layers. So far, hitherto existing PECVD processes have not been feasible enough for the deposition of these interlayers due to their low coating rates. As alternatives lacquering processes have been used, which however require the transfer out off and back into the vacuum chamber. With the arcPECVD process a tool is now available, which is predestined for these applications and which can be applied in-line with other PVD processes.

The process, which is carried out at the low pressure of 0.1 … 5 Pa, can be effortlessly combined in a coating system with other PVD processes such as magnetron sputtering or electron beam deposition. This makes it possible to apply entire layer stacks in-line in only one vacuum run in roll-to-roll systems: this results in enormous savings in terms of time and money. The arcPECVD process was developed at the Fraunhofer FEP using the institute’s very own plasma sources and demonstrates good process stability. During a coating time of more than 2.5 hours, a constantly high coating rate of 2000 nm ∙ m/min ± 1.5 % could be achieved.

The Fraunhofer FEP’s hollow cathode plasma sources have already been approved in the industrial sector. They have been in use in the production of packaging films in widths of up to 2.85 meters for the past five years.

Dr. Steffen Günther, a specialist for PECVD processes at Fraunhofer FEP, sees enormous application potential for the arcPECVD: “We have already been able to show that PECVD layers are able to significantly reduce the layer stress in optical layer stacks. I see a great potential for example in the combination of the arcPECVD with the electron beam deposition of titanium oxide which would allow the highly productive – and as a result cost-effective – production of optical layer systems. Other application areas are permeation barriers for photovoltaic modules and organic electronics. The arcPECVD process is ready and waiting to be adapted to specific layer and customer demands within the framework of joint development projects with partners from both the industrial and research sectors.”
More information can be found under:
http://www.fep.fraunhofer.de

Press contact:
Annett Arnold, M.Sc.
Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Gemany | www.fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>