Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Flexibility for Steel Production

27.01.2014
Siemens enables steel mills to adapt their production processes more flexibly to raw material prices and emission regulations.

The newly developed JET Process provides sufficient heat energy to melt a high proportion of scrap and sponge iron into liquid pig iron. As a result, steel producers can more easily take advantage of low prices for these materials.



And because producing pig iron in a blast furnace creates especially large amounts of carbon dioxide, this new process also reduces CO2 emissions. This JET technology is already operating successfully in a steel mill in Asia.

The JET process uses a bottom-blowing converter. Such converters contain melted pig iron, scrap, and sponge iron. By blowing oxygen into this molten mass from below, these materials are processed into steel. Lime or other materials are introduced to promote the formation of slag. The amount of scrap and sponge iron in bottom-blowing converters may not exceed one fifth of the amount of pig iron. If this proportion were any larger, the scrap and sponge iron would no longer melt into the molten mass.

However, by injecting additional coal into the bottom of the converter, the JET process provides enough heat to enable a larger proportion of scrap and sponge iron to be added to the mixture. To achieve this result, a hot air lance blasts oxygen-enriched air at a temperature of around 1,300 °C onto the steel bath from above.

This hot blast travels at close to the speed of sound. It mixes the molten mass so completely that almost all of the carbon monoxide escaping from the bath reacts with the oxygen in the hot air blast, forming CO2 and heating the liquid steel. Additionally, coal is blown in from below, where it is used as fuel. This injection of coal is carefully controlled. The combination of a targeted introduction of coal and the hot air lance creates so much heat energy that the converter can be operated using only scrap and sponge iron. Moreover, due to their design, the oxygen jets located at the bottom of the converter slice through the scrap like cutting torches. As a result, the converter can be loaded with very large pieces of scrap.

These new special converters equipped with the JET process -make steel production less dependent on the availability of pig iron and allow more flexibility in blast furnace operations. With this innovation Siemens closes the gap between conventional converters, with their limits on the proportion of scrap and sponge iron they can accommodate, and electric-arc furnaces, which can only process steel scrap. JET technology can either be installed as a new facility or retrofitted into an existing plant.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

Further reports about: CO2 CO2 emission Flexibility JET Process Production line Steel carbon monoxide heat energy

More articles from Process Engineering:

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>