Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Flexibility for Steel Production

27.01.2014
Siemens enables steel mills to adapt their production processes more flexibly to raw material prices and emission regulations.

The newly developed JET Process provides sufficient heat energy to melt a high proportion of scrap and sponge iron into liquid pig iron. As a result, steel producers can more easily take advantage of low prices for these materials.



And because producing pig iron in a blast furnace creates especially large amounts of carbon dioxide, this new process also reduces CO2 emissions. This JET technology is already operating successfully in a steel mill in Asia.

The JET process uses a bottom-blowing converter. Such converters contain melted pig iron, scrap, and sponge iron. By blowing oxygen into this molten mass from below, these materials are processed into steel. Lime or other materials are introduced to promote the formation of slag. The amount of scrap and sponge iron in bottom-blowing converters may not exceed one fifth of the amount of pig iron. If this proportion were any larger, the scrap and sponge iron would no longer melt into the molten mass.

However, by injecting additional coal into the bottom of the converter, the JET process provides enough heat to enable a larger proportion of scrap and sponge iron to be added to the mixture. To achieve this result, a hot air lance blasts oxygen-enriched air at a temperature of around 1,300 °C onto the steel bath from above.

This hot blast travels at close to the speed of sound. It mixes the molten mass so completely that almost all of the carbon monoxide escaping from the bath reacts with the oxygen in the hot air blast, forming CO2 and heating the liquid steel. Additionally, coal is blown in from below, where it is used as fuel. This injection of coal is carefully controlled. The combination of a targeted introduction of coal and the hot air lance creates so much heat energy that the converter can be operated using only scrap and sponge iron. Moreover, due to their design, the oxygen jets located at the bottom of the converter slice through the scrap like cutting torches. As a result, the converter can be loaded with very large pieces of scrap.

These new special converters equipped with the JET process -make steel production less dependent on the availability of pig iron and allow more flexibility in blast furnace operations. With this innovation Siemens closes the gap between conventional converters, with their limits on the proportion of scrap and sponge iron they can accommodate, and electric-arc furnaces, which can only process steel scrap. JET technology can either be installed as a new facility or retrofitted into an existing plant.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

Further reports about: CO2 CO2 emission Flexibility JET Process Production line Steel carbon monoxide heat energy

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>