Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Find the plug

17.09.2008
A pressure pulse through a pipeline can locate plugs, saving oil companies lots of money.

More and more oil extraction takes place on the ocean floor –not the easiest place to reach when it comes to maintaining and repairing pipelines that don’t function the way they should. Researchers at the Norwegian University of Science and Technology have developed and patented a new technique called the pressure pulse method for finding plugs in oil pipelines on the ocean floor.

Robots in pipes

Wax deposits are currently the largest unsolved problem in underwater oil production. Oil that is sent from a platform was cooled when it passed through pipelines on the ocean’s bottom; as a result, deposits build up along the pipe’s interior.

Currently, when the flow through the pipe is restricted, the pipeline is shut down, and a robot is sent into the pipe to crawl its way through. Now and then these robots get stuck because they encounter obstructions that are simply too large for them. The operator then has to close off the pipeline and reverse the pressure, so as to get the robot unstuck. Sometimes the robot has to travel a long stretch of pipeline before it finds something to get started on. Both situations can take quite a long time.

Time is money in the oil industry, and lost production time can quickly become a costly affair. If a platform is closed for a longer period of several months because the pipelines are shut down, the costs can top NOK 10-100 million.

Water hammer

Professor Jon Steinar Gudmundsson, who developed the pressure pulse method, explains that he came up with the idea after he observed the shut-down of a geothermal well in Iceland.

”When a well like this is closed with the help of a pressure valve, a pressure wave is created. I realised that this pulse could be used for something constructive,” Gudmundsson explains.

The method is based on a seismic principle and is similar to an echo-sounder: A pressure pulse is sent out and the return signal is measured. “The principle is the same as what we call a ’water hammer’. That’s the bang you hear in a washing machine or a dishwasher when the flow of water to the machine is shut off quickly,” he says.

Mapping with sound

The reflected sound waves from the sound pulses can be measured using complex analytical methods. The measurements can then be used to create a map of the inside of the pipeline, right up to the next pressure vent. Such a map can show where the pipe narrows, and where the deposits are so thick that they plug the pipe. The information helps operators choose the best possible method for clearing the pipe.

Professor Gudmundsson’s idea uses existing installations to measure pressures. The pressure valve is already in place. The only thing that needs to be done is to close the valve quite quickly, which creates the pressure wave.

Markland Technology AS has been spun off of NTNU to sell the method to large oil companies, and has met with considerable success, says Gudmundsson. The business has been developed and licensed by Harald K. Celius.

Jon Steinar Gudmundsson | alfa
Further information:
http://www.ntnu.no

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>