Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Find the plug

17.09.2008
A pressure pulse through a pipeline can locate plugs, saving oil companies lots of money.

More and more oil extraction takes place on the ocean floor –not the easiest place to reach when it comes to maintaining and repairing pipelines that don’t function the way they should. Researchers at the Norwegian University of Science and Technology have developed and patented a new technique called the pressure pulse method for finding plugs in oil pipelines on the ocean floor.

Robots in pipes

Wax deposits are currently the largest unsolved problem in underwater oil production. Oil that is sent from a platform was cooled when it passed through pipelines on the ocean’s bottom; as a result, deposits build up along the pipe’s interior.

Currently, when the flow through the pipe is restricted, the pipeline is shut down, and a robot is sent into the pipe to crawl its way through. Now and then these robots get stuck because they encounter obstructions that are simply too large for them. The operator then has to close off the pipeline and reverse the pressure, so as to get the robot unstuck. Sometimes the robot has to travel a long stretch of pipeline before it finds something to get started on. Both situations can take quite a long time.

Time is money in the oil industry, and lost production time can quickly become a costly affair. If a platform is closed for a longer period of several months because the pipelines are shut down, the costs can top NOK 10-100 million.

Water hammer

Professor Jon Steinar Gudmundsson, who developed the pressure pulse method, explains that he came up with the idea after he observed the shut-down of a geothermal well in Iceland.

”When a well like this is closed with the help of a pressure valve, a pressure wave is created. I realised that this pulse could be used for something constructive,” Gudmundsson explains.

The method is based on a seismic principle and is similar to an echo-sounder: A pressure pulse is sent out and the return signal is measured. “The principle is the same as what we call a ’water hammer’. That’s the bang you hear in a washing machine or a dishwasher when the flow of water to the machine is shut off quickly,” he says.

Mapping with sound

The reflected sound waves from the sound pulses can be measured using complex analytical methods. The measurements can then be used to create a map of the inside of the pipeline, right up to the next pressure vent. Such a map can show where the pipe narrows, and where the deposits are so thick that they plug the pipe. The information helps operators choose the best possible method for clearing the pipe.

Professor Gudmundsson’s idea uses existing installations to measure pressures. The pressure valve is already in place. The only thing that needs to be done is to close the valve quite quickly, which creates the pressure wave.

Markland Technology AS has been spun off of NTNU to sell the method to large oil companies, and has met with considerable success, says Gudmundsson. The business has been developed and licensed by Harald K. Celius.

Jon Steinar Gudmundsson | alfa
Further information:
http://www.ntnu.no

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>