Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Find the plug

17.09.2008
A pressure pulse through a pipeline can locate plugs, saving oil companies lots of money.

More and more oil extraction takes place on the ocean floor –not the easiest place to reach when it comes to maintaining and repairing pipelines that don’t function the way they should. Researchers at the Norwegian University of Science and Technology have developed and patented a new technique called the pressure pulse method for finding plugs in oil pipelines on the ocean floor.

Robots in pipes

Wax deposits are currently the largest unsolved problem in underwater oil production. Oil that is sent from a platform was cooled when it passed through pipelines on the ocean’s bottom; as a result, deposits build up along the pipe’s interior.

Currently, when the flow through the pipe is restricted, the pipeline is shut down, and a robot is sent into the pipe to crawl its way through. Now and then these robots get stuck because they encounter obstructions that are simply too large for them. The operator then has to close off the pipeline and reverse the pressure, so as to get the robot unstuck. Sometimes the robot has to travel a long stretch of pipeline before it finds something to get started on. Both situations can take quite a long time.

Time is money in the oil industry, and lost production time can quickly become a costly affair. If a platform is closed for a longer period of several months because the pipelines are shut down, the costs can top NOK 10-100 million.

Water hammer

Professor Jon Steinar Gudmundsson, who developed the pressure pulse method, explains that he came up with the idea after he observed the shut-down of a geothermal well in Iceland.

”When a well like this is closed with the help of a pressure valve, a pressure wave is created. I realised that this pulse could be used for something constructive,” Gudmundsson explains.

The method is based on a seismic principle and is similar to an echo-sounder: A pressure pulse is sent out and the return signal is measured. “The principle is the same as what we call a ’water hammer’. That’s the bang you hear in a washing machine or a dishwasher when the flow of water to the machine is shut off quickly,” he says.

Mapping with sound

The reflected sound waves from the sound pulses can be measured using complex analytical methods. The measurements can then be used to create a map of the inside of the pipeline, right up to the next pressure vent. Such a map can show where the pipe narrows, and where the deposits are so thick that they plug the pipe. The information helps operators choose the best possible method for clearing the pipe.

Professor Gudmundsson’s idea uses existing installations to measure pressures. The pressure valve is already in place. The only thing that needs to be done is to close the valve quite quickly, which creates the pressure wave.

Markland Technology AS has been spun off of NTNU to sell the method to large oil companies, and has met with considerable success, says Gudmundsson. The business has been developed and licensed by Harald K. Celius.

Jon Steinar Gudmundsson | alfa
Further information:
http://www.ntnu.no

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>