Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fibre laser quietly revolutionizes the world

08.10.2009
For more than 50 years lasers have been successfully established in research and industry. Now, a special configuration is taking the fast lane: the fibre laser.

Its advantages are obvious: due to the fibre design the beam quality is close to perfect, hence best possible focus ability even with very long operating distances is ensured.

Flexible fibre geometry and vibration insensitivity as well as high efficiency and low operating costs convincingly allow an uncomplicated integration in industrial, automated production processes. Compared to conventional materials processing, the laser machining entails positive features, namely minor limitations regarding processable materials, non-contact treatment and high beam scanning speed as well as maximum accuracy.

A diversified consortium on the European level will work together to set new standards in the field of fibre laser technology. Main objective of the nearly 16 m. EUR EU-project LIFT - Leadership in Fibre laser Technologies, - starting in September 2009, is the offensive consolidation of Europe's scientific, engineering and production-related leadership position. Coming from 9 different countries, expertises of 15 decisive companies, among them two Fraunhofer institutes, three universities and one non-profit-organization joined and constitute a strong consortium.

Managed by the Fraunhofer-Institute for Material and Beam Technology IWS Dresden, laser suppliers, producers of optical and opto-electronic components, manufacturers of photonic fibres and fundamental researchers as well as application engineers will work on several goals.

The consortium will focus on the development of fibre-based short pulse lasers for so called gentle "cold treatment" of materials, in particular for special ceramic-materials, being of increasing interest in various areas. Another key role plays the progression of ultra reliable, pulsed high-performance-fibre laser systems which will significantly enhance processes like remote-laser cutting or welding in their efficiency.

A specific challenge within the medical sector will be the realization of a three-colour fibre laser. The aim is to develop a narrowband fibre laser system which is continuously emitting VIS radiation at wavelengths specifically chosen to treat various symptoms like acne or retina indisposing. Furthermore, this laser system will permit to combat certain types of cancer via photodynamic therapy.

Additionally, the project addresses the sector of renewable energies. As the technical efficiency of photoelectric cells reaches its upper limit, the consortium will focus on the improvement of individual production steps in the manufacturing of solar modules. Pulsed high performance fibre-laser systems in combination with intelligent remote-beam delivery components will allow the up to now very intricate large area processing of solar substrates.

Almost unnoticed by the end user, the fibre laser proceeds on its way to a crucial component of Europe's high technology and so quietly revolutionizes the production and medical technology of tomorrow.

Your contact partner for further information:

Fraunhofer Institute for Material and Beam Technology IWS Dresden
(Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden)
01277 Dresden, Winterbergstr. 28
LIFT Coordinator
Dr. Udo Klotzbach
Phone: +49 351 83391 - 3252
Fax: +49 351 83391 - 3300
E-mail: udo.klotzbach@iws.fraunhofer.de
EU Research Coordination
Anja Strehle
Phone: +49 351 83391 - 3438
Fax: +49 351 83391 - 3300
E-mail: anja.strehle@iws.fraunhofer.de
Press and Public relations
Dr. Ralf Jäckel
Telefon: +49 351 83391 3444
Telefax: +49 351 83391 3300
E-mail: ralf.jaeckel@iws.fraunhofer.de

Dr. Ralf Jaeckel | idw
Further information:
http://www.iws.fraunhofer.de
http://www.iws.fraunhofer.de/presse/2009/e_pr0914.html

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>