Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European researchers developed OLED element that can be manufactured using printing technology

29.10.2008
The flexible and affordable source of light is particularly suitable for packaging

Researchers working in the European ROLLED project have developed a flexible OLED element that can be mass produced using roll-to-roll printing technology. The OLED elements can be used to add value to product packages.

The new method is considerably cheaper than the traditional manufacturing method. The project was coordinated by VTT,and project participants included INM, CSEM, Ciba, Hansaprint, UPM and PolylC.

At its simplest, the flexible OLED element can be used in product packaging, posters or on supermarket shelves to attract the attention of consumers. It can also be connected to sensors measuring the freshness of food contained in packages. It can also be used to prevent product copying. Arto Maaninen, Technology Manager of the VTT Technical Research Centre in Finland, predicts that the first OLED elements will be in commercial use within a couple of years.

An OLED is an organic light emitting diode, functioning in a way similar to LED lights. Importantly, the power consumption of the OLED light source is very low. Using organic materials, OLED light elements can be affordably manufactured using printing methods on large, flexible surfaces.

The OLED element developed under the ROLLED project is made from organic materials and is encapsulated in a moisture barrier film. The element is 200-250 micrometers thick, the equivalent to three or four sheets of paper.

The manufacturing method was tested in two demonstration tests. The first was presented as a two-colour OLED element that is attached to a product package. When the package is unopened, a green tick is displayed. When the package is opened, the fuse is blown and the tick changes into a red cross.

The second demonstration showed how the OLED element can be powered by an NFC telephone. The EU flag, with the stars representing the Members, was printed on a business card. When an NFC phone was placed near the card, the stars printed with the OLED elements lit up.

The current production cost of an OLED element is tens of cents. Researchers, however, are aiming for some end applications that cost as little as just a few cents. The acquisition cost of the equipment needed in the manufacturing process is clearly lower, and the speed of production is higher than in traditional production methods. The savings achieved can be up to half of the traditional production costs of OLED elements manufactured using a glass substrate.

The expertise developed during the production of flexible OLED elements can also be applied to the printing of solar cells used as a power source for various small portable devices.

The new OLED element was developed in the EU-funded ROLLED project, coordinated by VTT. Within this project VTT developed the printing process, CSEM different patterning technologies, and INM anode inks and barriers. VTT also developed a low work function cathode ink that enhances the functioning of the components by lowering the power supply voltage and reducing power consumption. It can be used in all printable electronics components, including transistors, solar cells and other electronics components.

VTT, Knowledge Solutions | alfa
Further information:
http://www.vtt.fi
http://www.vtt.fi/uutta/2008/28102008_oled-elementti.jsp?lang=en

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>