Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EMBL-EBI researchers make DNA storage a reality

24.01.2013
Every film and TV programme ever created - in a teacup
In a nutshell:
- EMBL-EBI researchers have tested a reliable and scalable method for using synthetic DNA to store data

- DNA is a promising medium for archiving data because it will last in the right conditions for 10 000 years or longer

- The data stored in synthetic DNA could be retrieved with 100% accuracy by sequencing the sample and reconstructing the original files

Researchers at the EMBL-European Bioinformatics Institute (EMBL-EBI) have created a way to store data in the form of DNA – a material that lasts for tens of thousands of years. The new method, published today in the journal Nature, makes it possible to store at least 100 million hours of high-definition video in about a cup of DNA.

There is a lot of digital information in the world – about three zettabytes’ worth (that’s 3000 billion billion bytes) – and the constant influx of new digital content poses a real challenge for archivists. Hard disks are expensive and require a constant supply of electricity, while even the best ‘no-power’ archiving materials such as magnetic tape degrade within a decade. This is a growing problem in the life sciences, where massive volumes of data – including DNA sequences – make up the fabric of the scientific record.

"We already know that DNA is a robust way to store information because we can extract it from bones of woolly mammoths, which date back tens of thousands of years, and make sense of it,” explains Nick Goldman of EMBL-EBI. “It’s also incredibly small, dense and does not need any power for storage, so shipping and keeping it is easy.”

Reading DNA is fairly straightforward, but writing it has until now been a major hurdle to making DNA storage a reality. There are two challenges: first, using current methods it is only possible to manufacture DNA in short strings. Secondly, both writing and reading DNA are prone to errors, particularly when the same DNA letter is repeated. Nick Goldman and co-author Ewan Birney, Associate Director of EMBL-EBI, set out to create a code that overcomes both problems.

“We knew we needed to make a code using only short strings of DNA, and to do it in such a way that creating a run of the same letter would be impossible. So we figured, let’s break up the code into lots of overlapping fragments going in both directions, with indexing information showing where each fragment belongs in the overall code, and make a coding scheme that doesn't allow repeats. That way, you would have to have the same error on four different fragments for it to fail – and that would be very rare," says Ewan Birney.

The new method requires synthesising DNA from the encoded information: enter Agilent Technologies, Inc, a California-based company that volunteered its services. Ewan Birney and Nick Goldman sent them encoded versions of: an .mp3 of Martin Luther King’s speech, “I Have a Dream”; a .jpg photo of EMBL-EBI; a .pdf of Watson and Crick’s seminal paper, “Molecular structure of nucleic acids”; a .txt file of all of Shakespeare's sonnets; and a file that describes the encoding.

“We downloaded the files from the Web and used them to synthesise hundreds of thousands of pieces of DNA – the result looks like a tiny piece of dust,” explains Emily Leproust of Agilent. Agilent mailed the sample to EMBL-EBI, where the researchers were able to sequence the DNA and decode the files without errors.

“We’ve created a code that's error tolerant using a molecular form we know will last in the right conditions for 10 000 years, or possibly longer,” says Nick Goldman. “As long as someone knows what the code is, you will be able to read it back if you have a machine that can read DNA.”

Although there are many practical aspects to solve, the inherent density and longevity of DNA makes it an attractive storage medium. The next step for the researchers is to perfect the coding scheme and explore practical aspects, paving the way for a commercially viable DNA storage model.

Policy regarding use
EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
EMBL-EBI
Mary Todd-Bergman
Senior Communications Officer
Hinxton, UK
contactpress@ebi.ac.uk
Tel: +44 1223 494 665

Isabelle Kling | EMBL Research News
Further information:
http://www.ebi.ac.uk
http://www.embl.de

Further reports about: DNA DNA sequence EMBL-EBI synthetic DNA woolly mammoth

More articles from Process Engineering:

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

nachricht Sustainable products: Fraunhofer LBF investigates recycling of halogen-free flame retardant
17.02.2016 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>