Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elements of successful connections

09.10.2014

Element-by-element tracking of laser processing reveals how metallic alloys reorganize during microscale laser melting processes

High-power lasers that can selectively cut and join metallic products are becoming increasingly important in today’s manufacturing industry. Now, Yingchun Guan from the A*STAR Singapore Institute of Manufacturing Technology and her co-workers have developed a technique that reveals exactly how molten elements vaporize and move about inside a laser-generated surface ‘plume’1 — findings that can advance additive manufacturing techniques used to print three-dimensional (3D) objects.


Understanding laser processes better can advance additive manufacturing techniques used to print three-dimensional objects.

© kadmy/iStock/Thinkstock

Researchers investigating the feasibility of 3D-printed implant materials often turn to magnesium–aluminum (Mg–Al) alloys because they are lightweight, tough and biocompatible. Recently, the A*STAR team demonstrated that laser surface melting of these alloys enhances their corrosion resistance as a result of a notable enhancement in the surface concentration of aluminum. It is difficult, however, to make the link between the initial alloy composition and the final product after laser processing, as many complex interactions occur in the cloud-like plume of laser-generated vapor particles.

Guan and her team designed a new experimental setup that can quantify which molten alloy elements are ejected into the laser plume. They positioned a thin silicon substrate perpendicular to a Mg–Al-based alloy a few millimeters from the laser firing point. Laser pulses then generated a plume that deposited onto the silicon surface.

When the researchers used a scanning electron microscope (SEM) to examine the deposits, they saw clear evidence of a phase explosion — a mixture of liquid and vaporized particles thrown out by the laser impact. These liquid deposits rendered many sections of the silicon wafer unsuitable for quantitative analysis.

But by combining the element-identifying capability of the SEM with time-of-flight mass spectrometry, the team produced ‘mass-resolved images’ that reconstructed the distribution of gaseous secondary ions in the plume.

The mass-resolved images revealed that Mg ions were evenly dispersed at high concentrations inside the plume. In contrast, the population of Al ions rises in the middle of the near-field region close to the laser firing point. Analysis showed that the Al species in the plume ‘fly’ further than those of Mg because of their higher transport rates in the hot near-field region.

Guan notes that the site-specific analytical capabilities of this technique should give researchers finer control over selective surface vaporization of alloying elements for enhanced, high-tech applications. “Our chemical analysis of the transport rates and distribution of vaporized species in the plume offers improved understanding of critical laser processes, including those used in additive manufacturing,” she says. 

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology and the Institute of Materials Research and Engineering

Reference

  1. Guan, Y., Zhou, W., Zheng, H., Li, Z., Seng, H. L. & Hong, M. Analysis of selective vaporization behavior in laser melting of magnesium alloy by plume deposition. Laser and Particle Beams 32, 49–54 (2014). | article

A*STAR Research | Research SEA News
Further information:
http://www.research.a-star.edu.sg/research/7044
http://www.researchsea.com

Further reports about: Analysis Laser Manufacturing SEM Technology deposits ions technique

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>