Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elements of successful connections

09.10.2014

Element-by-element tracking of laser processing reveals how metallic alloys reorganize during microscale laser melting processes

High-power lasers that can selectively cut and join metallic products are becoming increasingly important in today’s manufacturing industry. Now, Yingchun Guan from the A*STAR Singapore Institute of Manufacturing Technology and her co-workers have developed a technique that reveals exactly how molten elements vaporize and move about inside a laser-generated surface ‘plume’1 — findings that can advance additive manufacturing techniques used to print three-dimensional (3D) objects.


Understanding laser processes better can advance additive manufacturing techniques used to print three-dimensional objects.

© kadmy/iStock/Thinkstock

Researchers investigating the feasibility of 3D-printed implant materials often turn to magnesium–aluminum (Mg–Al) alloys because they are lightweight, tough and biocompatible. Recently, the A*STAR team demonstrated that laser surface melting of these alloys enhances their corrosion resistance as a result of a notable enhancement in the surface concentration of aluminum. It is difficult, however, to make the link between the initial alloy composition and the final product after laser processing, as many complex interactions occur in the cloud-like plume of laser-generated vapor particles.

Guan and her team designed a new experimental setup that can quantify which molten alloy elements are ejected into the laser plume. They positioned a thin silicon substrate perpendicular to a Mg–Al-based alloy a few millimeters from the laser firing point. Laser pulses then generated a plume that deposited onto the silicon surface.

When the researchers used a scanning electron microscope (SEM) to examine the deposits, they saw clear evidence of a phase explosion — a mixture of liquid and vaporized particles thrown out by the laser impact. These liquid deposits rendered many sections of the silicon wafer unsuitable for quantitative analysis.

But by combining the element-identifying capability of the SEM with time-of-flight mass spectrometry, the team produced ‘mass-resolved images’ that reconstructed the distribution of gaseous secondary ions in the plume.

The mass-resolved images revealed that Mg ions were evenly dispersed at high concentrations inside the plume. In contrast, the population of Al ions rises in the middle of the near-field region close to the laser firing point. Analysis showed that the Al species in the plume ‘fly’ further than those of Mg because of their higher transport rates in the hot near-field region.

Guan notes that the site-specific analytical capabilities of this technique should give researchers finer control over selective surface vaporization of alloying elements for enhanced, high-tech applications. “Our chemical analysis of the transport rates and distribution of vaporized species in the plume offers improved understanding of critical laser processes, including those used in additive manufacturing,” she says. 

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology and the Institute of Materials Research and Engineering

Reference

  1. Guan, Y., Zhou, W., Zheng, H., Li, Z., Seng, H. L. & Hong, M. Analysis of selective vaporization behavior in laser melting of magnesium alloy by plume deposition. Laser and Particle Beams 32, 49–54 (2014). | article

A*STAR Research | Research SEA News
Further information:
http://www.research.a-star.edu.sg/research/7044
http://www.researchsea.com

Further reports about: Analysis Laser Manufacturing SEM Technology deposits ions technique

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>