Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrostatic surface cleaning

09.10.2009
It's often the little things that count in industrial manufacturing processes. Particles less than half the diameter of a hair in size can significantly impair quality in production.

For example, there should be no particles larger than five micrometers on the packaging film of food and medicines, as these could contaminate the contents. Tiny particles also cause problems in the printing industry, as they reduce the quality of the print if they remain on the surface of the paper. And fine particles on electrical components can cause operational failures.

Manufacturers usually resort to a type of vacuum cleaner to remove the dust – it blows air on the contaminated surface, then sucks this in again, together with the undesired particles. However, this method does not effectively remove particles smaller than 20 micrometers, as the electrostatic force causes the majority of them to remain on the surface.

Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart have developed a system which also removes these fine dust particles effectively from the product surfaces. Colleagues from NITO A/S in Denmark, Ziegener + Frick GmbH in Ellhofen and the Danish Innovation Institute were involved in the development process. "The system guarantees the quality of the product and improves the working environment of employees, as it reliably collects the harmful particles, preventing them from going into the air and then into the lungs of employees," says Sukhanes Laopeamthong, a researcher at the IGB.

The researchers charge the dust particles with positive ions. A negatively charged electrode attracts the positively charged dust particles, the resulting force lifting the dust particles easily from the surface of the product. A controlled air current carries them to the dust collector. Prior to the construction of the test equipment, the researchers have already resolved a few questions using special simulation software.

What electrical field strength is required to lift the dust particles? What are the required characteristics of the air current transporting the particles? The test equipment removes on average 85 percent of dust particles smaller than 15 micrometers and more than 95 percent of dust particles bigger than 15 micrometers. The researchers are presenting the exhibit at the Parts2Clean trade fair from 20 to 22 October in Stuttgart (hall 1, stand F 610/G 709). The scientists expect the system to be operational in industry in approximately two years.

Sukhanes Laopeamthong | EurekAlert!
Further information:
http://www.igb.fraunhofer.de

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>