Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic Circuit Board Based on Thin Glass

24.09.2013
Polymers are often used as an electrically isolating base material for circuit boards.

However, miniaturization and extreme stress are pushing the limits of printed circuit boards (PCB) made of epoxy-resin, glass-fiber fabrics (FR4) and polyamides. High temperatures often cause deformation or decomposition of the plastic materials.


Laser structuring of metal coated thin glass

Due to the thermal expansion characteristics of the materials used, there is subsequently a risk of cracks or breakage in the dielectrical layer. This can, for example, lead to pad cratering, i.e. the formation of craters on the surface of the PCB.

For high temperature applications above 250 °C, thin glass could be a suitable substitute for the conventional polymers used as a basis material for the circuit boards, since glass has a high chemical stability and a low thermal expansion coefficient of 7,2 * 10 6 K 1. The field of aerospace technology has interesting applications for these new, thin glass circuit boards.

Together with project partners, the Laser Zentrum Hannover e. V. (LZH) is developing production processes for multilayer circuit boards based on thin glass with 145 µm thicknesses. The trend to miniaturization and higher processing speeds in the PCB industry is a special challenge for manufacturing. In the “Glass PCB Project”, scientists in the Glass Group of the Production and Systems Department are working on developing two different laser processes for processing these special materials:

First, a laser is used to structure the metal layers. According to the PCB layout, a laser is used to make conducting tracks by removing excess metal from a thin glass base. The advantages of laser ablation are especially apparent in the extremely fine structural resolution of the metal, without causing damage to the sensitive material.

Secondly, a laser is used to form holes or vias to connect the different circuit board layers, or the conventional components. The LZH is currently working on finding suitable laser parameters to drill through the materials without causing thermal damage. Also, the vias should be of high quality, and be reproducible at high speeds. Optimal results aim at generating parallel vias through the glass layers. The process time, which is dependent on the material thickness and the circuit board layout, is presently 2 s for drilling a microvia with a 0.2 mm diameter through a 170 µm thick material, with a tendency towards shorter times.

Also, comparative investigations carried out by project partner TU Berlin (main area of research – Technologies for Micropherics) show that new material systems based on thin glass must use the laser for drilling vias, since conventional, mechanical drilling causes unwanted microcracks, and the service life of the drills is 40 times shorter.

Altogether, three scientific institutes and four industrial companies are involved in the joint project. The LZH develops the laser processes for structuring the circuit board layouts and for drilling the vias, and the industrial partners such as Schott AG provide thin glass materials. The circuit board manufacturer Hotoprint GmbH & Co. KG offers both production processes for the thin glass circuit boards and electroplating. KCS Europe GmbH is in charge of coating technologies (sputtering) of the conducting metal layers on the thin glass. Furthermore, CCI Eurolam GmbH is involved as a specialist for materials for circuit board manufacturing. Process handling of the thin glass sheets for multilayer boards is being researched by the Institute of Transport and Automation Technology (ITA) of the University of Hannover.

The project “Glass PCB – Development of a Multilayer Circuit Board Based on Thin Glass” will be funded by the Central Innovation Program SME (ZIM) of the Federal Ministry of Economics and Technology (BMWi) until the middle of 2014.

Lena Bennefeld | Electronic Circuit Board Based o
Further information:
http://www.lzh.de/

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>