Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrical Storage: Safe Contacts between Battery Cells by Laser Beam Welding

20.04.2015

The Fraunhofer Institute for Laser Technology ILT has developed a new laser welding technology for temperature-sensitive cylindrical battery cells that is now ready for series production. Since 2009 the experts from in Aachen, Germany have been working on battery joining – the process of connecting individual cells into packs. They are currently working with other Fraunhofer Institutes to put together a complete battery pack.

The all-important joining process is carried out using fiber lasers with a maximum power output of 1 kW. The method is called oscillation laser welding, a technology that applies a precise energy input to the batteries.


Oscillation laser welding creates safe electrical contacts between battery cells.

Picture source: Fraunhofer ILT, Aachen/Germany.

It does so by superimposing a circular or swinging oscillation of the laser beam onto the feed movement. This local modulation allows the control of the welding process very successfully. What’s more, it enables the scientists to carry out circular welding on the tops of the batteries.

Welding 4,800 cells

As the metals are melted during the laser-welding process, a very small area (0.1 to 0.25 mm) is briefly heated to a high temperature, only to rapidly cool again once the welding is over. “Take notebook cells, for instance. Here, we weld very thin steel plates to copper alloys directly over temperature-sensitive plastic,” Benjamin Mehlmann, expert for the metallic materials micro-joining at the Fraunhofer ILT explains.

“What makes this possible is that the method is incredibly fast and has a low energy input.” Preferred applications for these round cells include portable computers, power tools (such as electric screwdrivers), and non-standard electric cars (such as the Tesla Roadster).

Oscillation laser welding is currently being used to join 4,800 standard cells (each with a diameter of 18 mm and a height of 65 mm) into a battery pack suitable for use in an electric vehicle. The Aachen-based scientists weld the cells in their charged state, which makes safety of paramount importance as the cells contain electrolytes that must not be allowed to leak out.

Optimizing oscillation laser welding

Fraunhofer ILT is currently in the validation phase of the project, which sees Mehlmann and his team improving the process and making it safe to use. As Mehlmann explains: “It’s an interesting option for SMEs wanting to use the method to develop their own solutions for portable and stationary applications.”

Integrating the process into a conventional ribbon bonder is also part of the brief (ribbon bonding is an assembly and joining technology process for bonding metallic ribbon, usually with ultrasound, to electrically connect components). Central to this application is the electrical contact between battery and electronics.

This development came about in a publicly funded project that saw Fraunhofer ILT collaborating with F & K Delvotec GmbH, a company based in Ottobrunn. Both parties will be showcasing the prototype at F & K Delvotec GmbH’s booth at the SMT Hybrid Packaging trade fair in Nuremberg, Germany, (May 5 – 7, 2015, Booth 7A-330).

Fraunhofer ILT will be presenting this joint project on April 27-29 at its booth (no. 25) at the Battery Power conference at the Eurogress in Aachen, Germany.

Contact

Dipl.-Ing. Benjamin Mehlmann
Micro Joining Group
Telephone +49 241 8906-613
benjamin.mehlmann@ilt.fraunhofer.de

Dr.-Ing. Alexander Olowinsky
Head of the Micro Joining Group
Telephone +49 241 8906-491
alexander.olowinsky@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>