Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting an unexpected delay at ultrafast speed

08.08.2011
High-speed laser measurements reveal new insights into rearrangements of light-driven chemical structures with implications for solar-energy conversion and opto-electric devices

Molecules that suddenly transform into new structures when stimulated by photons or electrons play key roles in many chemical and biological processes. Recently, chemists have discovered that adding transition metals such as copper to photo-responsive organic ligands produces materials with high solar conversion efficiencies, owing to the metal’s ready supply of light-activated electrons. But despite the interest in these substances for opto-electronic devices, their inner workings remain mostly inscrutable because the charge-transfer dynamics happen too quickly for detection by typical instruments.

Tahei Tahara and colleagues from the RIKEN Advanced Science Institute, Wako, have spearheaded development of ultrafast laser spectroscopy that can capture these high-speed reactions by taking ‘snapshots’ of photochemical transformations with quadrillionths-of-a-second (10-15 s) accuracy. Now, an unprecedented finding by the research team—a picosecond (10-12 s) time delay during a theoretically instantaneous distortion—is set to overturn current thinking about light-driven rearrangements in transition metal complexes.

Copper dimethylphenanthroline is a compound containing two propeller-shaped wings, made out of thin aromatic sheets. Chemists regularly use it to explore photo-induced structural changes. In its unexcited state, the complex’s wings are oriented perpendicular to each other. But when illuminated at a specific wavelength, the copper ion absorbs a photon and transfers an electron to the sheets—an action that flattens the structure by disrupting critical copper—phenanthroline bonds.

The exact flattening mechanism, however, has been controversial because copper electrons can be photo-excited in two different ways: through an easily accessible high-energy state called S2, or a harder-to-spot, low-energy transition called the S1 state. Tahara and colleagues tracked the extremely fast relaxation process from both states and found that S1 electrons provoked the flattening. This finding will allow researchers to eventually squeeze as much efficiency as possible from these devices.

When the team examined how the molecule behaved in the S1 excited state, they saw unexpected oscillations in the absorption signals during its picosecond-long lifetime. According to Tahara, these signals are unmistakable evidence that the excited complex vibrates coherently in place and waits a short while before distorting.

Because this result contradicts traditional understandings of transition metal processes—atomic movements were theorized to immediately follow excitation to S1-type electronic states—it may spark revolutionary changes in how chemists conceive and control photo-initiated reactions. “This is a fundamental and deep issue,” says Tahara.

By expanding this technique to other poorly understood metal complexes, the team hopes to produce ‘textbook-type’ results that can guide future development of these remarkable materials.

The corresponding author for this highlight is based at the Molecular Spectroscopy Laboratory, RIKEN Advanced Science Institute

Reference:
Iwamura, M., Watanabe, H., Ishii, K., Takeuchi, S. & Tahara, T. Coherent nuclear dynamics in ultrafast photoinduced structural change of bis(diimine)copper(I) complex. Journal of the American Chemical Society 133, 7728–7736 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>