Design treatment of advanced metals producing better sculpting

A team from Purdue University discovered that the application of surface-active chemical agents enables metal cutting to be significantly improved with reduced forces and better surface quality. Credit: Srinivasan Chandrasekar/Purdue University

Most people may not realize it but they encounter products made with exotic or advanced metals every day.

The metals are used in aircraft, orthopedic components, medical instruments, cars, solar panels, military equipment and other applications, and are called advanced or exotic because they are more difficult to find and more costly to use in manufacturing.

But the conventional method of using advanced metals in manufacturing is high in cost, in part because they tend to be difficult to sculpture. Now, a new process for cutting these metals may help make them easier to use and lead to significant changes in the future of manufacturing. It's a growing industry – the global metal fabrication market value is expected to reach $24 billion by 2024.

“What we have created is a new way to approach the machining of these metals that has the potential to change manufacturing system processes,” said Srinivasan Chandrasekar, a professor of industrial engineering in Purdue University's College of Engineering. “Our solution is showing great promise in making these metals more affordable to manufacture and process by making them easier to machine.”

The Purdue team created a method for applying a designer surface-active agent – the name for a variety of chemicals used in metals processing – to the surface of a metal to make it easier to cut and shape the material into parts and pieces. The research is published in the Jan. 10 issue of Physical Review Applied.

Researchers at Purdue used common alcohols on an aluminum surface and were able to cut the metal more easily, with at least 50 percent less force, and produce a smoother end surface with fewer cracks and tears compared with aluminum without the alcohol treatment.

“Purdue provides an extraordinary environment to conduct this kind of research that you will not find at most other universities,” Chandrasekar said. “We have lab equipment and space to test our methods at the scale found in actual manufacturing industry facilities and spaces.”

Chandrasekar said the same approach is showing promise for other metal systems such as stainless steel, tantalum, copper, iron and even nickel alloys. Each metal system requires a specific designer agent since alcohols do not interact with other metals in the same way as they do with aluminum.

Chandrasekar and his team have worked with the Purdue Research Foundation Office of Technology Commercialization on patenting their technologies. They are looking for additional research partners.

Previous research by the same team demonstrated the application of metal marking inks and glues to make gummy metals such as aluminum, stainless steels, copper and tantalum much easier to cut for industrial applications.

Their work aligns with Purdue's Giant Leaps celebration, celebrating the global advancements in sustainability as part of Purdue's 150th anniversary. This is one of the four themes of the yearlong celebration's Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

###

About Purdue Research Foundation Office of Technology Commercialization

The Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university's academic activities. The office is managed by the Purdue Research Foundation, which received the 2016 Innovation and Economic Prosperity Universities Award for Innovation from the Association of Public and Land-grant Universities. For more information about funding and investment opportunities in startups based on a Purdue innovation, contact the Purdue Foundry at foundry@prf.org. For more information on licensing a Purdue innovation, contact the Office of Technology Commercialization at otcip@prf.org. The Purdue Research Foundation is a private, nonprofit foundation created to advance the mission of Purdue University.

Writer: Chris Adam, 765-588-3341, cladam@prf.org

Source: Srinivasan Chandrasekar, chandy@purdue.edu

Media Contact

Chris Adam EurekAlert!

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors