Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decolorization of Acid Red 1 by Fenton-like process using acid-activated clay

17.12.2013
Textile dyeing is a significant consumer of water and producer of contaminated aqueous waste stream. Without proper waste water treatment, the effluents discharged by these factories will harm the environment. Dyes, as they are concentrated in colour, represent potential harm to mankind and aquatic life.

Colored effluents can cause irritation to skin and mucous membrane, upper respiratory tract and severe headaches to mankind. The discharge of dyes into the rivers will deplete dissolved oxygen that resulting in death of aquatic life. Therefore, the industrial dye-laden effluents need to be effectively treated before discharged into the environment in order to prevent these potential hazards.

There have been many techniques to remove dyes from wastewater. The traditional method technologies such as coagulation/flocculation, membrane separation or activated carbon adsorption, only do a phase transfer of pollutant. Biological treatment is not a suitable solution technique due to biological resistance of some dyes.

Heterogeneous Fenton technology has emerged as a successful technique to counter the rising environmental problems in the last few decades. It has been proven effective for degradation of dyes and organic pollutant to the required low limit of concentration with a wider pH value. In heterogeneous catalyst, the ion cation is “immobilized” within the structure and in the pore/interlayer space of catalyst. As a result, the catalyst can maintain its ability to generate hydroxyl radicals from hydrogen peroxide, and iron hydroxide precipitation is prevented.

In heterogeneous Fenton most of the reactions takes place either at the surface of the supports or in the pores of the support, and only a very small portion occurred in the bulk.

Clay found abundantly and combined with the functionality of iron can serve as heterogeneous catalyst in the Fenton-like reactions. Kuala Kangsar clay is special local river clay used to make water pitcher. The clay water containers are not only synonymous with Kuala Kangsar, but have become an icon for the state of Perak. Being inexpensive and widely available, Kuala Kangsar clay represents an attractive catalyst support for the removal of dyes effluent.

In the present work, decolourisation of Acid Red 1 dye solution in batch process was carried out using iron (II) immobilized on Kuala Kangsar clay as active heterogeneous catalyst. The physico-chemical behaviour of Kuala Kangsar clay was modified by acid treatment. This process could improve the catalytic activity of the catalyst by immobilizing more ions which are the active sites on the support during impregnation process. The effect of different initial iron ions loading on Kuala Kangsar clay, initial concentration of hydrogen peroxide and Acid Red 1, catalyst dosage, reaction temperature and initial pH solution on the decolourisation efficiency of the process were discussed.

The initial and final concentration of Acid Red 1 was analysed using the UV-Vis spectrophotometer (Shimadzu, model UV 1601 Japan) at maximum wavelength of 532 nm. The best reacting conditions were found to be 0.60 wt.% of iron ions loading on Kuala Kangsar clay when the dosage of catalyst is 3.0 g L-1 with the initial pH of 2.5. The optimum concentration of hydrogen peroxide is 8 mM when the concentration of Acid Red 1 is 50 mg L-1 at temperature 30°C. Under these conditions, 99% decolourisation of Acid Red 1 was achieved within 140 min reaction time. Iron (II) immobilized on Kuala Kangsar Clay represents an attractive heterogeneous catalyst in the application of textile industrial treatment plant since they are low cost, natural and environmentally friendly.

The effectiveness of heterogeneous Fenton technology has also been tested in the reduction of hydrogen peroxide concentration from semiconductor industry by using other support. The results showed that the concentration of hydrogen peroxide could be reduced up to 78% within 30 min reaction time. The next step is to develop the prototype for continuous system for the treatment of textile wastewater. This prototype would enable the researcher to study on the decolourisation of textile wastewater on the continuous system. This research is an important step towards the development of technologies that aim to combat the waste from the textile industry.

For further information contact:
Hamizura Hassan,
Faculty of Chemical Engineering
Universiti Teknologi MARA
Pulau Pinang, Malaysia
E-mail: hamizura179@ppinang.uitm.edu.my
Funding information
Research Management Institute, UiTM Shah Alam

Darmarajah Nadarajah | Research asia research news
Further information:
http://www.uitm.edu.my
http://www.researchsea.com

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>