Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decolorization of Acid Red 1 by Fenton-like process using acid-activated clay

17.12.2013
Textile dyeing is a significant consumer of water and producer of contaminated aqueous waste stream. Without proper waste water treatment, the effluents discharged by these factories will harm the environment. Dyes, as they are concentrated in colour, represent potential harm to mankind and aquatic life.

Colored effluents can cause irritation to skin and mucous membrane, upper respiratory tract and severe headaches to mankind. The discharge of dyes into the rivers will deplete dissolved oxygen that resulting in death of aquatic life. Therefore, the industrial dye-laden effluents need to be effectively treated before discharged into the environment in order to prevent these potential hazards.

There have been many techniques to remove dyes from wastewater. The traditional method technologies such as coagulation/flocculation, membrane separation or activated carbon adsorption, only do a phase transfer of pollutant. Biological treatment is not a suitable solution technique due to biological resistance of some dyes.

Heterogeneous Fenton technology has emerged as a successful technique to counter the rising environmental problems in the last few decades. It has been proven effective for degradation of dyes and organic pollutant to the required low limit of concentration with a wider pH value. In heterogeneous catalyst, the ion cation is “immobilized” within the structure and in the pore/interlayer space of catalyst. As a result, the catalyst can maintain its ability to generate hydroxyl radicals from hydrogen peroxide, and iron hydroxide precipitation is prevented.

In heterogeneous Fenton most of the reactions takes place either at the surface of the supports or in the pores of the support, and only a very small portion occurred in the bulk.

Clay found abundantly and combined with the functionality of iron can serve as heterogeneous catalyst in the Fenton-like reactions. Kuala Kangsar clay is special local river clay used to make water pitcher. The clay water containers are not only synonymous with Kuala Kangsar, but have become an icon for the state of Perak. Being inexpensive and widely available, Kuala Kangsar clay represents an attractive catalyst support for the removal of dyes effluent.

In the present work, decolourisation of Acid Red 1 dye solution in batch process was carried out using iron (II) immobilized on Kuala Kangsar clay as active heterogeneous catalyst. The physico-chemical behaviour of Kuala Kangsar clay was modified by acid treatment. This process could improve the catalytic activity of the catalyst by immobilizing more ions which are the active sites on the support during impregnation process. The effect of different initial iron ions loading on Kuala Kangsar clay, initial concentration of hydrogen peroxide and Acid Red 1, catalyst dosage, reaction temperature and initial pH solution on the decolourisation efficiency of the process were discussed.

The initial and final concentration of Acid Red 1 was analysed using the UV-Vis spectrophotometer (Shimadzu, model UV 1601 Japan) at maximum wavelength of 532 nm. The best reacting conditions were found to be 0.60 wt.% of iron ions loading on Kuala Kangsar clay when the dosage of catalyst is 3.0 g L-1 with the initial pH of 2.5. The optimum concentration of hydrogen peroxide is 8 mM when the concentration of Acid Red 1 is 50 mg L-1 at temperature 30°C. Under these conditions, 99% decolourisation of Acid Red 1 was achieved within 140 min reaction time. Iron (II) immobilized on Kuala Kangsar Clay represents an attractive heterogeneous catalyst in the application of textile industrial treatment plant since they are low cost, natural and environmentally friendly.

The effectiveness of heterogeneous Fenton technology has also been tested in the reduction of hydrogen peroxide concentration from semiconductor industry by using other support. The results showed that the concentration of hydrogen peroxide could be reduced up to 78% within 30 min reaction time. The next step is to develop the prototype for continuous system for the treatment of textile wastewater. This prototype would enable the researcher to study on the decolourisation of textile wastewater on the continuous system. This research is an important step towards the development of technologies that aim to combat the waste from the textile industry.

For further information contact:
Hamizura Hassan,
Faculty of Chemical Engineering
Universiti Teknologi MARA
Pulau Pinang, Malaysia
E-mail: hamizura179@ppinang.uitm.edu.my
Funding information
Research Management Institute, UiTM Shah Alam

Darmarajah Nadarajah | Research asia research news
Further information:
http://www.uitm.edu.my
http://www.researchsea.com

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>