Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decolorization of Acid Red 1 by Fenton-like process using acid-activated clay

17.12.2013
Textile dyeing is a significant consumer of water and producer of contaminated aqueous waste stream. Without proper waste water treatment, the effluents discharged by these factories will harm the environment. Dyes, as they are concentrated in colour, represent potential harm to mankind and aquatic life.

Colored effluents can cause irritation to skin and mucous membrane, upper respiratory tract and severe headaches to mankind. The discharge of dyes into the rivers will deplete dissolved oxygen that resulting in death of aquatic life. Therefore, the industrial dye-laden effluents need to be effectively treated before discharged into the environment in order to prevent these potential hazards.

There have been many techniques to remove dyes from wastewater. The traditional method technologies such as coagulation/flocculation, membrane separation or activated carbon adsorption, only do a phase transfer of pollutant. Biological treatment is not a suitable solution technique due to biological resistance of some dyes.

Heterogeneous Fenton technology has emerged as a successful technique to counter the rising environmental problems in the last few decades. It has been proven effective for degradation of dyes and organic pollutant to the required low limit of concentration with a wider pH value. In heterogeneous catalyst, the ion cation is “immobilized” within the structure and in the pore/interlayer space of catalyst. As a result, the catalyst can maintain its ability to generate hydroxyl radicals from hydrogen peroxide, and iron hydroxide precipitation is prevented.

In heterogeneous Fenton most of the reactions takes place either at the surface of the supports or in the pores of the support, and only a very small portion occurred in the bulk.

Clay found abundantly and combined with the functionality of iron can serve as heterogeneous catalyst in the Fenton-like reactions. Kuala Kangsar clay is special local river clay used to make water pitcher. The clay water containers are not only synonymous with Kuala Kangsar, but have become an icon for the state of Perak. Being inexpensive and widely available, Kuala Kangsar clay represents an attractive catalyst support for the removal of dyes effluent.

In the present work, decolourisation of Acid Red 1 dye solution in batch process was carried out using iron (II) immobilized on Kuala Kangsar clay as active heterogeneous catalyst. The physico-chemical behaviour of Kuala Kangsar clay was modified by acid treatment. This process could improve the catalytic activity of the catalyst by immobilizing more ions which are the active sites on the support during impregnation process. The effect of different initial iron ions loading on Kuala Kangsar clay, initial concentration of hydrogen peroxide and Acid Red 1, catalyst dosage, reaction temperature and initial pH solution on the decolourisation efficiency of the process were discussed.

The initial and final concentration of Acid Red 1 was analysed using the UV-Vis spectrophotometer (Shimadzu, model UV 1601 Japan) at maximum wavelength of 532 nm. The best reacting conditions were found to be 0.60 wt.% of iron ions loading on Kuala Kangsar clay when the dosage of catalyst is 3.0 g L-1 with the initial pH of 2.5. The optimum concentration of hydrogen peroxide is 8 mM when the concentration of Acid Red 1 is 50 mg L-1 at temperature 30°C. Under these conditions, 99% decolourisation of Acid Red 1 was achieved within 140 min reaction time. Iron (II) immobilized on Kuala Kangsar Clay represents an attractive heterogeneous catalyst in the application of textile industrial treatment plant since they are low cost, natural and environmentally friendly.

The effectiveness of heterogeneous Fenton technology has also been tested in the reduction of hydrogen peroxide concentration from semiconductor industry by using other support. The results showed that the concentration of hydrogen peroxide could be reduced up to 78% within 30 min reaction time. The next step is to develop the prototype for continuous system for the treatment of textile wastewater. This prototype would enable the researcher to study on the decolourisation of textile wastewater on the continuous system. This research is an important step towards the development of technologies that aim to combat the waste from the textile industry.

For further information contact:
Hamizura Hassan,
Faculty of Chemical Engineering
Universiti Teknologi MARA
Pulau Pinang, Malaysia
E-mail: hamizura179@ppinang.uitm.edu.my
Funding information
Research Management Institute, UiTM Shah Alam

Darmarajah Nadarajah | Research asia research news
Further information:
http://www.uitm.edu.my
http://www.researchsea.com

More articles from Process Engineering:

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>