Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decolorization of Acid Red 1 by Fenton-like process using acid-activated clay

17.12.2013
Textile dyeing is a significant consumer of water and producer of contaminated aqueous waste stream. Without proper waste water treatment, the effluents discharged by these factories will harm the environment. Dyes, as they are concentrated in colour, represent potential harm to mankind and aquatic life.

Colored effluents can cause irritation to skin and mucous membrane, upper respiratory tract and severe headaches to mankind. The discharge of dyes into the rivers will deplete dissolved oxygen that resulting in death of aquatic life. Therefore, the industrial dye-laden effluents need to be effectively treated before discharged into the environment in order to prevent these potential hazards.

There have been many techniques to remove dyes from wastewater. The traditional method technologies such as coagulation/flocculation, membrane separation or activated carbon adsorption, only do a phase transfer of pollutant. Biological treatment is not a suitable solution technique due to biological resistance of some dyes.

Heterogeneous Fenton technology has emerged as a successful technique to counter the rising environmental problems in the last few decades. It has been proven effective for degradation of dyes and organic pollutant to the required low limit of concentration with a wider pH value. In heterogeneous catalyst, the ion cation is “immobilized” within the structure and in the pore/interlayer space of catalyst. As a result, the catalyst can maintain its ability to generate hydroxyl radicals from hydrogen peroxide, and iron hydroxide precipitation is prevented.

In heterogeneous Fenton most of the reactions takes place either at the surface of the supports or in the pores of the support, and only a very small portion occurred in the bulk.

Clay found abundantly and combined with the functionality of iron can serve as heterogeneous catalyst in the Fenton-like reactions. Kuala Kangsar clay is special local river clay used to make water pitcher. The clay water containers are not only synonymous with Kuala Kangsar, but have become an icon for the state of Perak. Being inexpensive and widely available, Kuala Kangsar clay represents an attractive catalyst support for the removal of dyes effluent.

In the present work, decolourisation of Acid Red 1 dye solution in batch process was carried out using iron (II) immobilized on Kuala Kangsar clay as active heterogeneous catalyst. The physico-chemical behaviour of Kuala Kangsar clay was modified by acid treatment. This process could improve the catalytic activity of the catalyst by immobilizing more ions which are the active sites on the support during impregnation process. The effect of different initial iron ions loading on Kuala Kangsar clay, initial concentration of hydrogen peroxide and Acid Red 1, catalyst dosage, reaction temperature and initial pH solution on the decolourisation efficiency of the process were discussed.

The initial and final concentration of Acid Red 1 was analysed using the UV-Vis spectrophotometer (Shimadzu, model UV 1601 Japan) at maximum wavelength of 532 nm. The best reacting conditions were found to be 0.60 wt.% of iron ions loading on Kuala Kangsar clay when the dosage of catalyst is 3.0 g L-1 with the initial pH of 2.5. The optimum concentration of hydrogen peroxide is 8 mM when the concentration of Acid Red 1 is 50 mg L-1 at temperature 30°C. Under these conditions, 99% decolourisation of Acid Red 1 was achieved within 140 min reaction time. Iron (II) immobilized on Kuala Kangsar Clay represents an attractive heterogeneous catalyst in the application of textile industrial treatment plant since they are low cost, natural and environmentally friendly.

The effectiveness of heterogeneous Fenton technology has also been tested in the reduction of hydrogen peroxide concentration from semiconductor industry by using other support. The results showed that the concentration of hydrogen peroxide could be reduced up to 78% within 30 min reaction time. The next step is to develop the prototype for continuous system for the treatment of textile wastewater. This prototype would enable the researcher to study on the decolourisation of textile wastewater on the continuous system. This research is an important step towards the development of technologies that aim to combat the waste from the textile industry.

For further information contact:
Hamizura Hassan,
Faculty of Chemical Engineering
Universiti Teknologi MARA
Pulau Pinang, Malaysia
E-mail: hamizura179@ppinang.uitm.edu.my
Funding information
Research Management Institute, UiTM Shah Alam

Darmarajah Nadarajah | Research asia research news
Further information:
http://www.uitm.edu.my
http://www.researchsea.com

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>