Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cost-saving Laser-based Process for Manufacturing Free-form Optics

12.04.2012
There is a growing demand for non-spherical glass optics. Currently, these optical elements – for example lenses for cameras or multifocal glasses – are still very costly to manufacture.
The Fraunhofer Institute for Laser Technology ILT has developed a process for manufacturing optical glass components, which should be particularly suitable for the cost-effective production of aspheres and free-form optics. With this procedure, engineers will be able to produce nearly every surface geometry imaginable in the future.

In optical systems such as headlights, projectors, camera lenses and lenses for glasses, optics ensure that light is focused as well as significantly determining image quality due to their surface form and finish quality. With commonly used spherical optics, the risk of aberration typically is reduced through combining several optics in a single optical system. However, this approach also increases the weight and size of the optical system. By using non-spherical lenses, whose surface form deviates from the spherical curvature of a spherical lens, engineers can effectively minimize such aberrations. This way, two or more conventional spherical optics can be replaced by one asphere and enable higher luminous efficacy. In addition, the dimensions and the weight of the overall optical system can be reduced.
Until now, small quantities of non-spherical optics have been produced through a number of expensive and time-consuming grinding and polishing steps. While the blank pressing of optics represents one possible alternative, it, however, is only economical for larger quantities. A young research team at the Fraunhofer ILT has developed a new process for individual manufacturing of apheres and free-form optics within the scope of the project “Forming and Polishing of Optical Glass Components by Ablation and Remelting with Laser Radiation” (or FoPoLas).

Ablating, Polishing, Correcting

Sebastian Heidrich and his team have been able to produce non-spherical and free-form surfaces with different degrees of curvature out of a quadratic piece of fused silica. In order to do this, they have combined different processing techniques into one process chain: Firstly, a CO2 laser beam heats the material to over 2,230°C, the evaporation temperature of fused silica. This way, the unnecessary material is evaporated selectively and ablated. According to computer generated data, nearly any surface form desired can be produced. In a following step, CO2 laser radiation heats the surface of the component again to near the evaporation temperature so that the viscosity of the uppermost material layer is changed. It becomes fluid and its roughness is reduced on account of the surface tension. The material remains polished once it has cooled. After this laser polishing step, remaining form defects shall be corrected with laser-based precision ablation in the future.

High Economy also for Small Series Production

This process chain is directed primarily at manufacturers of individualized, non-spherical optics. Since the desired surface form is produced based on computer data, it can be changed without extensive retooling. In comparison to conventional manufacturing methods, the use of this process chain could shorten the time it takes to produce optical glass components presumably by a factor of ten. For complex free-form surfaces, this factor can even be much higher. This would mean an enormous reduction in costs and high flexibility for the production of small to medium lot sizes. The process steps can also be used separately, for example, to polish the inside of drill holes, starting from a diameter of several millimeters.

Currently the scientists are optimizing the individual steps of the process chain. Before the process can be applied in the industry, the precision of the ablation process and the surface quality of the polishing process have to be increased. In addition, an appropriate measurement technology has to be developed for form detection, in order to attain suitable optical quality of the manufactured glass components.
On May 11, experts will be presenting the process within the scope of the International Laser Technology Fair AKL’12 in the laser plant park of the Fraunhofer ILT. Interested parties can find further information on this at: www.lasercongress.org.

Contacts at the Fraunhofer ILT

Dipl.-Ing. Sebastian Heidrich
Polishing
Telephone +49 241 8906-645
sebastian.heidrich@ilt.fraunhofer.de

Dr. Edgar Willenborg
Polishing
Telephone +49 241 8906-213
edgar.willenborg@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany
Telephone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>