Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Commercial-scale test of new technology to recover coal from sludge successful

17.09.2010
A new technology for removing water from ultrafine coal slurry has been successfully tested at the commercial scale at an operating coal cleaning plant. The technology offers the possibility of reducing the coal slurry impoundment problem from the source. A peer-reviewed paper on this new technology was presented Sept. 15 at the 13th Australian Coal Preparation Society Conference, Cairns, Queensland.

Cleaning coal after it has been mined is done with water. The bulk of the coal mined is relatively coarse in size and, therefore, can be readily washed of impurities and subsequently dewatered.

However, a portion of mined coal is smaller than approximately 30-40 microns – something like the size of talcum powder – and is difficult to dewater after cleaning, said Roe-Hoan Yoon, the Nicholas T. Camicia Professor of Mining and Mineral Engineering in Virginia Tech's College of Engineering. As a result, finer coal is often discarded to slurry impoundments. There are hundreds of sludge impoundments in the U.S., mostly in Appalachia, creating environmental and safety concerns, said Yoon.

Yoon presented the paper in Australia with co-author Wally Schultz, executive vice president of Decanter Machine Inc. of Johnson City, Tenn., the largest supplier of screen-bowl centrifuges internationally.

Yoon, Gerald Luttrell, Massey Professor of Mining and Mineral Engineering, and their colleagues at the Center for Advanced Separation Technologies (CAST) at Virginia Tech have developed a hyperbaric centrifuge that was patented by Virginia Tech Intellectual Properties Inc. and sublicensed to Decanter Machine. "The new technology compliments what Decanter already has," said Yoon.

Encouraged by the results of a pilot-scale test conducted in 2009, Jim Walter Resources Inc. of Brookwood, Ala. (Walter Energy) tested a full-scale commercial unit successfully. "Everything has performed as promised by Decanter," said Joel Franklin, preparation engineer for Jim Walter Resources.

In the pilot-scale test, coal slurries consisting of ultrafine coal were dewatered to less than 20 percent moisture. "The product coal feels like dry powder when you touch it because the water left with the coal is spread so thinly across its large surface area," Luttrell said.

According to a National Research Council report, the U.S. coal industry discards annually 70 to 90 million tons of fine refuse to slurry impoundments. "The dewatering technologies developed by CAST will help coal companies recover all of the mined coal. The technology can also be used to recover the coal in existing impoundments, which can help clean-up the environment and create jobs in the coal producing regions like Southwest Virginia," said Congressman Rick Boucher (D-VA 9th District), who has supported funding for CAST and other energy projects.

"We are very optimistic," said Decanter Machine Inc. President Ken Robinette.

The centrifuge technology is the most recent of the advanced technologies developed by CAST. Microcel™ flotation column was the first major separation technology developed. It uses microbubbles to separate fine coal from mineral matter that becomes ash when burned at power plants and from other impurities, and is used widely in Australia.

As part of a project funded by National Energy Technology Laboratory (NETL), CAST has developed two other advanced dewatering processes. One is the novel dewatering aids that are currently marketed by Nalco Company. The other is a technology that may be more useful for recovering and dewatering the ultrafine coal from existing impoundments, according to Yoon. Virginia Tech has applied for a patent for this new technology.

In June 2010, Yoon testified before the subcommittee of the West Virginia Legislature's Joint Standing Committee that was charged with addressing the issues concerning coal slurry impoundments. Yoon suggested that the CAST research funded by NETL can offer technological solutions.

The paper, Taking Advantage of the CentribaricTM Technology: Split Dewatering of Fine Coal , was authored by Serhat Keles, post doctoral associate in mining and minerals engineering, Luttrell, and Yoon, all of Virginia Tech and CAST; Schultz; and M. K. Eraydin of Nalco Company, Blacksburg, Va.

The U.S. Department of Energy has supported CAST research since 2002. Learn more about CAST at http://www.cast.mining.vt.edu/

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>