Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Coal Dewatering Technology Turns Sludge to Powder

The ultrafine coal particles that are the residue of the coal cleaning process have been discarded into hundreds of impoundments. Now, a dewatering technology developed at Virginia Tech has succeeded in reducing the moisture content of ultrafine coal to less than 20 percent.

Because there has been no economically viable technology to remove water from ultrafine coal slurries, the ultrafine particles that are the residue of the coal cleaning process have been discarded into hundreds of impoundments.

Now, Peter Bethell of Arch Coal Inc. reports that a dewatering technology developed at Virginia Tech has succeeded in reducing the moisture content of ultrafine coal to less than 20 percent, transforming it to a salable product.

With funding from the National Energy Technology Laboratory (NETL), Roe-Hoan Yoon (, the Nicholas T. Camicia Professor of Mining and Mineral Engineering at Virginia Tech, and his colleagues have developed a hyperbaric centrifuge that can efficiently dewater coal as fine as talcum powder. Such coal fines presently must be discarded by even the most advanced coal cleaning plants because its moisture content in conventional dewatering systems make it unmarketable.

"The hyperbaric centrifuge is like the spin cycle on a washing machine, with the addition of compressed air," said Yoon. "Combining increased spinning and compressed air has a synergistic effect and cuts the moisture in half compared to conventional technology."

"The results were very favorable," said Bethell, director of coal preparation at Arch. "This is material we would have had to discard; therefore, such success would mean reduced refuse in the environment and improved economic returns for the company. It also goes to energy independence because we are using more of the available resource," said Bethell.

"The Arch results mean a lot for getting the Centribaric TM technology started," said Wally Schultz, executive vice president at Decanter Machine Inc. of Johnson City, Tenn., which built the prototype unit that was used at Mingo Logan Coal Company’s Cardinal Preparation Plant, a subsidiary of Arch Coal. "The prototype unit was trailer mounted and capable of processing approximately 30 gallons per minute of feed slurry," said Schultz, who was onsite for the tests.

Decanter has been in business since the late 1980s and is the industry leader in screen-bowl centrifuge technology. "We view the Centribaric centrifuge as an extension of our product line to further recover fine coal. Previous centrifuges have not used the compressed air component," Schultz said.

"There has been no technology to economically dewater coal fines below 44 microns," said Yoon. "Now this technology can be used in conjunction with the MicrocelTM technology, developed many years ago to remove ash, to re-mine the fine coal discarded to impoundments and to help companies minimize waste generation.

"For me, that is a great accomplishment," said Yoon. "People living in coal mining districts will see fewer and smaller slurry ponds. We have done something for the industry and for the public."

"The whole purpose of cleaning coal is to reduce the ash content so that the users, usually utility companies, don't have to deal with it," said Gerald H. Luttrell (, the Massey Professor of Mining and Mineral Engineering at Virginia Tech. He added that "the lower-ash and lower-moisture coals also produce less CO2 to clean up. They burn more efficiently and thus require less coal to generate a given amount of electricity."

For this reason, Yoon and Luttrell have received $1 million in funding from the U.S. Department of State to also help the Indian coal industry produce a cleaner product ( And the Virginia Tech researchers anticipate another project to be funded by Coal India Limited (CIL), the largest coal company in India, with the same a similar objective. The U.S. Department of Energy (DOE) has been negotiating with CIL for this project on behalf of Virginia Tech.

However, plans to install the new technology in the U.S. may be stalled. During the recent economic downturn, the price of coal dropped precipitously, which may be a barrier for immediate installation of commercial-scale units at plants. "But when the market improves, we will probably be able to justify spending the capital to install full-scale units," said Bethell, who has been working with Yoon's group for more than 20 years. "We both have Ph.D.s in similar fields, and I like to make sure that we liaise with academia so that if there is anything new we can consider using it." Bethell was the first to implement the Microcel technology.

Yoon arrived at Virginia Tech in 1979 from Canada. With funding from the U.S. Department of Energy, he and his colleagues, Luttrell and Professor Greg Adel, studied the collision between bubbles and particles in water. This fundamental study led to the development of the Microcel technology, which is used widely in the mining industry and is considered the best for cleaning fine coal. The group has developed many other technologies that are also in commercial use.

Yoon is the founding director of the Center for Advanced Separation Technology (, a consortium of seven universities including Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Nevada at Reno, New Mexico Tech, and the University of Utah. Its goal is to develop advanced separation technologies as applied to energy resources and environmental control.

In October 2008, Yoon was elected to the National Academy of Engineering — the highest honor in engineering. He earned his Ph.D. in metallurgical engineering from McGill University in 1977. He obtained his bachelor's in mining engineering from Seoul National University in 1967.

DOE officials comment on the innovation here:

Susan Trulove | Newswise Science News
Further information:

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>