Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cladding gold contacts with a laser

27.02.2012
Plated metal switches are the preferred choice for any application that requires durable keys – from laptops and cell phones to cars.

Electroplating is the conventional method used for this purpose, but scientists have now developed a novel laser-based method which involves laser cladding gold contact spots instead of applying the gold in a thin layer on the whole surface. This new technique is fast and offers the potential to cut up to 90 percent of the amount of gold used.


Gold contact spots on a snap dome.
Source: INOVAN

Keys and keyboards have become a common sight in today’s world, both in our personal lives (cars, phones, computers) and in industrial settings. Users expect keys to operate with 100 percent reliability regardless of how many times they are pressed. At the same time, manufacturers are seeking cheaper production methods and new ways of making more efficient use of expensive, high-quality materials.

The Fraunhofer Institute for Laser Technology ILT in Aachen has developed a method of producing keys on an industrial scale which fulfills both these requirements. Within the scope of the Mifulas 2 project funded by Germany’s Federal Ministry of Education and Research (BMBF), researchers at Fraunhofer ILT – working in collaboration with their project partner INOVAN – have been drawing on their experience in laser cladding to replace the electroplated gold layers on switch contacts known as ‘snap domes’ with small welded gold spots.

Snap domes comprise small contact springs which are used to make electrical contact and provide tactile feedback in a wide range of keyboard designs. They generally consist of high-quality spring steel which is typically gold-plated or modified in some other way in order to achieve better contact and more reliable switching. As well as having low contact resistance, gold also boasts outstanding resistance to corrosion.

The new method replaces the conventional large gold surfaces with small contact spots which are cladded by a fiber laser. Using gold powder with grain diameters smaller than 10 µm, the fiber laser takes advantage of its beam diameter of less than 100 µm to create contact spots with a diameter and height of less than 100 µm. This micro laser cladding uses a nozzle to feed the gold powder into the interaction zone of the laser beam and the substrate material (e.g. stainless steel, nickel alloy). The laser energy melts both the gold powder and a thin surface layer of the substrate to create a welded spot which is metallurgical bonded to the substrate.

Significant reduction in material consumption

One of the biggest advantages of this new method is its material efficiency. To replace the thin gold layer deposited on snap domes by conventional methods, you need just five selectively welded gold contact spots – and initial calculations suggest that this slashes the amount of material required to make the gold contact by between 50 and 90 percent. Preliminary tests carried out by INOVAN comprising 100,000 switching operations demonstrate that this new approach does not measurably affect switch service life. In addition, the electrical properties of the gold contact spots correspond to the results obtained from electroplating.

Integrated production

The laser-based method also makes it possible to integrate the fabrication of the gold contact spots into the production of the switch components themselves. This enables rolls of material to be processed and facilitates the efficient production of short run batches and prototypes. Cladding a single point takes approximately 50 milliseconds. Researchers are currently investigating how to accelerate the process; experts consider that it should be possible to weld 20 contact spots simultaneously in the future by splitting the laser beam.

Using laser cladding to produce contacts from precious metals is a method that, in principle, is suitable for all metal parts which currently rely on plating techniques to make electrical contacts. Examples include the switches used in cell phones as well as bipolar plates for fuel cells.

Your contacts at Fraunhofer ILT
Our experts are on hand to answer your questions:
Dipl.-Phys. Matthias Belting
Coatings and Heat Treatment Group
Phone +49 241 8906-624
matthias.belting@ilt.fraunhofer.de
Dr. Andreas Weisheit
Head of Coatings and Heat Treatment Group
Phone +49 241 8906-403
andreas.weisheit@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>