Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using Chlorine in Swimming Pools Safely and Economically

25.03.2009
OSEC-NXT Membrane-Type Electrolysis System with Improved Electrolytic Cell

The OSEC-NXT membrane-type electrolysis system from Siemens offers swimming pool operators a safe, reliable and economically efficient alternative to chlorine production. Two configurations are offered for six different production capacities ranging from 6 to 60 kilograms of equivalent chlorine per day to meet the disinfection requirements of various size swimming pools.

High-quality materials that are especially resistant to chemicals and temperature fluctuations are used for the electrolytic cell. The optimized temperature-monitoring function ensures reliable operation. Thanks to the integrated ChemWeb server, operating parameters or setpoints can be checked or altered via the Internet once the correct password has been entered.

Like its predecessor OSEC-NT, the OSEC-NXT membrane-type electrolytic chlorination system produces sodium hypochlorite directly on site through the electrolysis of brine. As a result, it is unnecessary to store chlorine gas and handle hazardous chemicals. Two configurations of the OSEC-NXT system are available, with six different production capacities of 6 and of 12 to 60 kilograms of equivalent chlorine per day. A product tank, brine tank, rectifier, control panel, softening system and mounting space for two dosing pumps are all integrated into the system. The product and brine tanks of the larger capacity system are offered separately.

The OSEC-NXT system produces hypochlorite at three times the strength of typical on-site systems, while still maintaining benefits of the low concentration such as greater stability and safety than commercial hypochlorite. In addition, as almost no salt remains in the product, the application will not increase in salinity.

For the optimized electrolytic cell, high-quality materials that are especially resistant to chemicals and temperature fluctuations have been used. The system also features an integrated output controller that ensures a high level of reliability and operational safety. The temperature of the system is monitored constantly so that, at the installation site, the operating parameters of the electrolytic cell remain independent of ambient influences and always within the optimum range. This increases the service life of the system.

The new membrane-type electrolytic chlorination units are equipped with a clearly laid-out touch panel for easy operator control. The scope of supply also includes a ChemWeb server, which makes it possible to check or alter operating parameters or setpoints via the Internet once a password has been entered.

Compared to conventional chlorine-gas installations, electrolytic systems that work on the basis of the open tubular cell or membrane method feature safety advantages in that it is no longer necessary to transport or work with chlorine gas cylinders. The chlorine gas room which is mandatory for chlorine gas installations and must contain safety equipment such as spraying devices is also not needed if this technology is employed.

Apart from cleaning swimming-pool water, electrolytic systems are suitable for disinfecting drinking water, water in breweries and the beverages industry, or service water in the canning and food industries. They can also be used to disinfect industrial process water or to treat cooling water in order to prevent biological growth.

The OSEC-NXT membrane-type electrolysis system from Siemens offers swimming pool operators a safe, reliable and economically efficient alternative to chlorine production.

The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of production, transportation, building and lighting technologies. With integrated automation technologies as well as comprehensive industry-specific solutions, Siemens increases the productivity, efficiency and flexibility of its customers in the fields of industry and infrastructure. The Sector consists of six Divisions: Building Technologies, Drive Technologies, Industry Automation, Industry Solutions, Mobility and Osram. With around 222,000 employees worldwide Siemens Industry posted in fiscal year 2008 a profit of EUR3.86 billion with revenues totaling EUR38 billion.

With the business activities of Siemens VAI Metal Technologies, (Linz, Austria), Siemens Water Technologies (Warrendale, Pa., U.S.A.), and Industry Technologies, (Erlangen, Germany), the Siemens Industry Solutions Division (Erlangen, Germany) is one of the world's leading solution and service providers for industrial and infrastructure facilities. Using its own products, systems and process technologies, Industry Solutions develops and builds plants for end customers, commissions them and provides support during their entire life cycle. With around 31,000 employees worldwide Siemens Industry Solutions achieved an order intake of EUR 8.4 billon in fiscal year 2008 (preliminary and unaudited).

Dr. Rainer Schulze | Siemens Industry Sector
Further information:
http://www.wallace-tiernan.com
http://www.industry.siemens.com/data/presse/pics/IIS200903564.jpg
http://www.siemens.com/industry

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>