Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chinese scientists unveil liquid phase 3-D printing method using low melting metal alloy ink

30.09.2014

Three-dimensional metal printing technology is an expanding field that has enormous potential applications in areas ranging from supporting structures, functional electronics to medical devices. Conventional 3D metal printing is generally restricted to metals with a high melting point, and the process is rather time consuming.

Now scientists at the Beijing Key Laboratory of CryoBiomedical Engineering, part of the Technical Institute of Physics and Chemistry at the Chinese Academy of Sciences, have developed a new conceptual 3D printing method with "ink" consisting of a metal alloy that has a melting point slightly above room temperature.


This figure shows the injection needle array of a future liquid phase 3-D printer.

Credit: ©Science China Press

In a new study published by the journal SCIENCE CHINA Technological Sciences, researchers Liu Jing and Wang Lei present a liquid-phase 3D printing technique for the rapid manufacturing of a conductive metal object in one, two or three dimensions. Compared with air cooling in conventional 3D printing, their liquid-phase manufacturing process prevents the metal ink from oxidation.

They outline their findings in a study entitled "Liquid phase 3D printing for quickly manufacturing conductive metal objects with a low melting point alloy ink."

In recent years, these scientists state, metals with a low melting point, especially metals that melt at room temperature, have attracted extensive attention in the areas of computer chip cooling, thermal interface materials, and microfluidics. "Such material has also been proposed as printing ink with evident value in direct writing electronics and 3D printing technology," the Beijing researchers add. In their new study, a four-element alloy, Bi35In48.6Sn16Zn0.4, was developed and adopted as the printing ink.

These scientists likewise developed a streamlined fabrication process.

First, a 3D object is generated as a computer-aided design (CAD) model, and then converted into an STL (STereoLithography) file. The STL file is imported into an open source software program that generates slices of the object as a set of horizontal layers and that generates tool paths for each layer. The printing ink is dropped into a liquid phase cooling fluid via an injection needle; the object is printed layer by layer.

During the process of liquid phase 3D printing, several factors affect the final printing quality.

The types and properties of the printing ink dominate the fabrication process. In principle, any metal with a low melting point (or less than 300°C) can be selected as a printing ink on condition that an appropriate cooling liquid is available. The ink material can be an alloy based on gallium, bismuth, or indium, or even a mixture of these alloys and nanoparticles.

Compared to conventional metal prototyping techniques, liquid phase 3D printing offers several distinct advantages: (1) At a relatively high speed of manufacturing, the process of printing metal objects in a liquid phase can be used to form three-dimensional structures. The temperature field and flow field of the cooling fluid can be flexibly controlled.

Through regulating the flow velocity and direction of the cooling fluid, some unique 3D metal structures can be realized, e.g. a 3D rotating body. (2) 3D electromechanical systems can be printed. A conductive liquid metal can be used in conjunction with nonmetal materials (e.g. plastic) to form 3D functional devices that include supporting structures and conductive devices. The combination of liquid phase 3D printing and conventional printing can meet all kinds of objectives.

In the new study, researchers at the Beijing Key Laboratory of CryoBiomedical Engineering also describe the contours of a liquid phase 3D printer of the future. To optimize the accuracy and speed of 3D printing, they propose adopting a combination of a syringe pump array and a syringe needle array. In this system, the syringe pump array is used to extract the liquid metal solution, while the syringe needle array is deployed to inject the liquid metal ink into the cooling fluid.

The injection needles can be replaced conveniently with others of different sizes to meet various printing objectives. Transforming digital 3D models into printed structures and controlling each needle's injection speed are completed through a computer-implemented process. In this way, 3D metal objects are printed on the bottom of a trough holding the cooling fluid, formed of water, ethanol or other substance.

###

This work was partially supported by the Key Research Program of the Chinese Academy of Sciences (Grant No. KGZD-EW-T04).

See the article: Wang L, Liu J. Liquid phase 3D printing for quickly manufacturing conductive metal objects with a low melting point alloy ink. SCI CHINA TECHNOL SC, 2014 Vol. 57 (9): 1721-1728

http://tech.scichina.com:8082/sciEe/EN/abstract/abstract514724.shtml

http://link.springer.com/article/10.1007/s11431-014-5583-4

SCIENCE CHINA Technological Sciences is produced by Science China Press, which is a leading publisher of scientific journals in China that operates under the auspices of the Chinese Academy of Sciences. Science China Press presents to the world leading-edge advancements made by Chinese scientists across a spectrum of fields.

http://www.scichina.com/

Liu Jing | Eurek Alert!

Further reports about: 3-D liquid metal melting point metal objects structures temperature

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>