Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodegradable, osteo-inductive and tailor-made: a new generation of implants is on the advance

20.05.2010
Research scientists at the Fraunhofer Institute for Laser Technology ILT have developed a laser shaping technique for the manufacture of biodegradable implants under the RESOBONE project funded by the German Federal Ministry of Education and Research (BMBF). The additive manufacturing method makes it possible to adapt the implant to the specific damage to the patient’s bone structure. The interconnective pore system enhances ingrowth of blood vessels and connective tissue cells in the implant and thus also ensures good biodegradability.

The regenerative ability of bones is limited. If they are too badly damaged, e.g. by a tumor or an accident, they have to be replaced by implants. At present surgeons mainly use permanent titanium implants. To improve their ingrowth behavior and compatibility, research scientists at the Fraunhofer ILT have developed a method for the manufacture of porous titanium-alloy implants.

The implants are made by selective laser melting (SLM), an additive laser manufacturing process which was developed back in the early 1990s by the research scientists in Aachen and which has been tailored more specifically to the needs of the medical sector. At the St. Johannes Hospital in Duisburg, Germany, the first hip prosthesis made using SLM was successfully implanted in a patient in 2008. Because of an extreme deformation of the hip, the 35-year-old woman needed a customized implant, which it was possible to produce thanks to the innovative technique. The project partner is now producing 30-40 implants annually using the SLM process.

Often it is not necessary and can even be detrimental for implants to retain their original shape in the patient’s body. Particularly in pediatric surgery, permanent implants are a problem because they soon become too small in relation to the child’s growing skeleton and have to be removed or replaced in a further operation. A need therefore exists in medicine for biodegradable implants with osteo-inductive properties: implants that degrade at the same rate as bone growth which at the same time they specifically stimulate. After a time they should be completely replaced by native bone tissue and thus accelerate the healing process. What’s more, the implant should be individually adapted to the damaged bone structure and exhibit best-possible compatibility in the body. A great advantage of using degradable implants is that in the case of disease-associated bone damage the patient only has to undergo one surgery.

Ultra-fine channels enhance degradability

The research scientists at the Fraunhofer ILT took up this challenge in cooperation with Aachen University Hospital and RWTH Aachen University’s Institute of Mineral Engineering and Department of Dental Materials and Biomaterials Research. In the RESOBONE project they developed a process for the manufacture of biodegradable implants on the basis of their experience with permanent implants produced by means of the SLM method. This production process makes it possible to individually adapt the macrostructure of biodegradable implants to the patient’s specific bone damage prior to surgery. The precisely defined microstructure of the implant ultimately determines its porosity, which is crucial for the implant to be resorbed by the body over time. For this to happen the implant needs to have channels running through it so that blood and cells can completely penetrate. “Creating this sponge-like lattice structure was the biggest challenge of process development,” says Simon Höges, project manager at the Fraunhofer ILT. “Previous types of implant could only be penetrated by native cells to a limited extent. The new technique enables us to generate porous channels with a diameter of 500 to 1000 µm to an accuracy of 100 µm. The material used to manufacture the implants is also of decisive importance in this respect.” β-tricalciumphosphate (β-TCP) is a suitable material for making biodegradable implants because as a natural constituent of human bone it encourages optimal ingrowth behavior in the body. Owing to its chemical structure, however, β-TCP cannot be directly processed by melting. It is therefore only limitedly suitable for processing by means of the SLM method. “We therefore had to find an additive that can be mixed with the pulverized β-TCP to combine its advantages with better meltability. We ultimately found this material in polylactide (PLA), a degradable polymer,” explains Höges. PLA melts at a temperature below 200 °C and is excellent for use in SLM processing. This composite material made it possible to finally produce the biodegradable implant. It is based on β-TCP, but the PLA additive makes the material easier to shape.

Layer by layer to a personal implant

The first step in the manufacture of the degradable implant involves making a CT scan image of the existing bone structure. The contours of the implant are then defined using a virtual technique on the basis of the recorded image data. A software model is then used to integrate the desired pore structure in the virtual implant. The result is a precise template for the microstructure and macrostructure of the implant to be produced. The actual production process can now begin: A laser beam melts a thin layer of the powdered material by local application of heat, following the structural outlines and contours of the virtual model. Then a further layer of powder is added and fused to the first layer with micrometer accuracy. By repeating this procedure, the tailor-made implant is built up layer by layer from the powder material. None of the material is wasted, because any excess powder is recycled and reused. The result is a biodegradable implant with a porous structure produced in a single integrated process.

On the basis of the knowledge and experience gained in this project, SLM is now available as a reproducible shaping process with considerable potential as a means of manufacturing tailor-made biodegradable implants with a defined pore structure. The process is suitable both for the one-off production of personalized implants and for use in low-volume batch production. The range of applications is wide: SLM can be used to make non-load-bearing bone implants as well as biomedical products such as biodegradable stents, which after performing their task are completely resorbed by the body. The technique can also be used in oral surgery, to reconstruct defects in the jaw bone. In cooperation with the partners from the Department of Dental Materials and Biomaterials Research, Höges and his team are currently testing further materials for the production of implants in order to optimize their ingrowth behavior.

Simon Höges will be presenting the conclusive results from the RESOBONE project at a seminar to be held in Aachen University Hospital on July 14, 2010. Lectures on the subject by project partners are also planned. Further information about this event is available at www.ilt.fraunhofer.de in the Events / Trade Fairs section.


Contacts at the Fraunhofer ILT
If you have any questions our experts will be pleased to assist:
Simon Höges
Rapid Manufacturing
Phone +49 241 8906-360
simon.hoeges@ilt.fraunhofer.de
Dr. Wilhelm Meiners
Rapid Manufacturing
Phone +49 241 8906-301
wilhelm.meiners@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | idw
Further information:
http://www.ilt.fraunhofer.de;

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>