Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The use of acoustic inversion to estimate the bubble size distribution in pipelines

New research from the University of Southampton has devised a new method to more accurately measure gas bubbles in pipelines.

The ability to measure gas bubbles in pipelines is vital to the manufacturing, power and petrochemical industries. In the case of harvesting petrochemicals from the seabed, warning of bubbles present in the crude that is being harvested is crucial because otherwise when these bubbles are brought up from the seabed (where pressure is very high) to the surface where the rig is, the reduction in pressure causes these bubbles to expand and causes 'blow out'.

A blow out is the sudden release of oil and/or gas from a well and issues with the blow out preventer were key in Deepwater Horizon oil spill (also known as the Macondo blowout) in the Gulf of Mexico in 2010.

Currently, the most popular technique for estimating the gas bubble size distribution (BSD) is to send sound waves through the bubble liquid and compare the measured attenuation of the sound wave (loss in amplitude as it propagates) with that predicted by theory.

The key problem is that the theory assumes that the bubbles exist in an infinite body of liquid. If in fact the bubbles are in a pipe, then the assumptions of the theory do not match the conditions of the experiment. That could lead to errors in the estimation of the bubble population.

Now, a team led by Professor Tim Leighton from the Institute of Sound and Vibration Research at the University of Southampton, has devised a new method, which takes into account that bubbles exist in a pipe. Professor Leighton and his team (Post-doctoral research fellows Kyungmin Baik and Jian Jiang) were commissioned to undertake the work as part of an ongoing programme to devise ways of more accurately estimating the BSD for the mercury-filled steel pipelines of the target test facility (TTF) of the $1.4 billion Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, USA one of the most powerful pulsed neutron sources in the world (

The research, which is presented in the Royal Society journal Proceedings of the Royal Society A, explores how measured phase speeds and attenuations in bubbly liquid in a pipe might be inverted to estimate the BSD (which was independently measured using an optical technique). This new technique, appropriate for pipelines such as TTF, gives good BSD estimations if the frequency range is sufficiently broad.

Professor Leighton says: "The SNS facility was built with the expectation that every so often it would need to be shut down and the now highly radioactive container of the mercury replaced by a new one, because its steel embrittles from radiation damage. However, because the proton beam impacts the mercury and generates shock waves, which cause cavitation bubbles to collapse in the mercury and erode the steel, the replacement may need to be more often than originally planned at full operating power. Indeed, achieving full design power is in jeopardy.

"With downtime associated with unplanned container replacement worth around $12 million, engineers at the facility are considering introducing helium bubbles, of the correct size and number, into the mercury to help absorb the shock waves before they hit the wall, so that the cavitation bubbles do not erode the steel. Oak Ridge National Laboratory (ORNL) and the Science and Facilities Research Council (Rutherford Appleton Laboratory, RAL) commissioned us as part of their programme to devise instruments to check that their bubble generators can deliver the correct number and size of bubbles to the location where they will protect the pipelines from erosion.

"This paper reports on the method we devised half-way through the research contract. It works, but just after we designed it the 2008 global financial crash occurred, and funds were no longer available to build the device into the mercury pipelines of ORNL. A more affordable solution had to be found, which is what we are now working on. The original design has been put on hold for when the world is in a healthier financial state. This has been a fantastic opportunity to work with nuclear scientists and engineers from ORNL and RAL."

Glenn Harris | EurekAlert!
Further information:

Further reports about: BSD Deepwater Horizon Laboratory ORNL RAL SNS Southampton TTF shock wave sound wave

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>