Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The use of acoustic inversion to estimate the bubble size distribution in pipelines

16.05.2012
New research from the University of Southampton has devised a new method to more accurately measure gas bubbles in pipelines.

The ability to measure gas bubbles in pipelines is vital to the manufacturing, power and petrochemical industries. In the case of harvesting petrochemicals from the seabed, warning of bubbles present in the crude that is being harvested is crucial because otherwise when these bubbles are brought up from the seabed (where pressure is very high) to the surface where the rig is, the reduction in pressure causes these bubbles to expand and causes 'blow out'.

A blow out is the sudden release of oil and/or gas from a well and issues with the blow out preventer were key in Deepwater Horizon oil spill (also known as the Macondo blowout) in the Gulf of Mexico in 2010.

Currently, the most popular technique for estimating the gas bubble size distribution (BSD) is to send sound waves through the bubble liquid and compare the measured attenuation of the sound wave (loss in amplitude as it propagates) with that predicted by theory.

The key problem is that the theory assumes that the bubbles exist in an infinite body of liquid. If in fact the bubbles are in a pipe, then the assumptions of the theory do not match the conditions of the experiment. That could lead to errors in the estimation of the bubble population.

Now, a team led by Professor Tim Leighton from the Institute of Sound and Vibration Research at the University of Southampton, has devised a new method, which takes into account that bubbles exist in a pipe. Professor Leighton and his team (Post-doctoral research fellows Kyungmin Baik and Jian Jiang) were commissioned to undertake the work as part of an ongoing programme to devise ways of more accurately estimating the BSD for the mercury-filled steel pipelines of the target test facility (TTF) of the $1.4 billion Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, USA one of the most powerful pulsed neutron sources in the world (www.sns.gov).

The research, which is presented in the Royal Society journal Proceedings of the Royal Society A, explores how measured phase speeds and attenuations in bubbly liquid in a pipe might be inverted to estimate the BSD (which was independently measured using an optical technique). This new technique, appropriate for pipelines such as TTF, gives good BSD estimations if the frequency range is sufficiently broad.

Professor Leighton says: "The SNS facility was built with the expectation that every so often it would need to be shut down and the now highly radioactive container of the mercury replaced by a new one, because its steel embrittles from radiation damage. However, because the proton beam impacts the mercury and generates shock waves, which cause cavitation bubbles to collapse in the mercury and erode the steel, the replacement may need to be more often than originally planned at full operating power. Indeed, achieving full design power is in jeopardy.

"With downtime associated with unplanned container replacement worth around $12 million, engineers at the facility are considering introducing helium bubbles, of the correct size and number, into the mercury to help absorb the shock waves before they hit the wall, so that the cavitation bubbles do not erode the steel. Oak Ridge National Laboratory (ORNL) and the Science and Facilities Research Council (Rutherford Appleton Laboratory, RAL) commissioned us as part of their programme to devise instruments to check that their bubble generators can deliver the correct number and size of bubbles to the location where they will protect the pipelines from erosion.

"This paper reports on the method we devised half-way through the research contract. It works, but just after we designed it the 2008 global financial crash occurred, and funds were no longer available to build the device into the mercury pipelines of ORNL. A more affordable solution had to be found, which is what we are now working on. The original design has been put on hold for when the world is in a healthier financial state. This has been a fantastic opportunity to work with nuclear scientists and engineers from ORNL and RAL."

Glenn Harris | EurekAlert!
Further information:
http://www.soton.ac.uk

Further reports about: BSD Deepwater Horizon Laboratory ORNL RAL SNS Southampton TTF shock wave sound wave

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>