Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The use of acoustic inversion to estimate the bubble size distribution in pipelines

16.05.2012
New research from the University of Southampton has devised a new method to more accurately measure gas bubbles in pipelines.

The ability to measure gas bubbles in pipelines is vital to the manufacturing, power and petrochemical industries. In the case of harvesting petrochemicals from the seabed, warning of bubbles present in the crude that is being harvested is crucial because otherwise when these bubbles are brought up from the seabed (where pressure is very high) to the surface where the rig is, the reduction in pressure causes these bubbles to expand and causes 'blow out'.

A blow out is the sudden release of oil and/or gas from a well and issues with the blow out preventer were key in Deepwater Horizon oil spill (also known as the Macondo blowout) in the Gulf of Mexico in 2010.

Currently, the most popular technique for estimating the gas bubble size distribution (BSD) is to send sound waves through the bubble liquid and compare the measured attenuation of the sound wave (loss in amplitude as it propagates) with that predicted by theory.

The key problem is that the theory assumes that the bubbles exist in an infinite body of liquid. If in fact the bubbles are in a pipe, then the assumptions of the theory do not match the conditions of the experiment. That could lead to errors in the estimation of the bubble population.

Now, a team led by Professor Tim Leighton from the Institute of Sound and Vibration Research at the University of Southampton, has devised a new method, which takes into account that bubbles exist in a pipe. Professor Leighton and his team (Post-doctoral research fellows Kyungmin Baik and Jian Jiang) were commissioned to undertake the work as part of an ongoing programme to devise ways of more accurately estimating the BSD for the mercury-filled steel pipelines of the target test facility (TTF) of the $1.4 billion Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, USA one of the most powerful pulsed neutron sources in the world (www.sns.gov).

The research, which is presented in the Royal Society journal Proceedings of the Royal Society A, explores how measured phase speeds and attenuations in bubbly liquid in a pipe might be inverted to estimate the BSD (which was independently measured using an optical technique). This new technique, appropriate for pipelines such as TTF, gives good BSD estimations if the frequency range is sufficiently broad.

Professor Leighton says: "The SNS facility was built with the expectation that every so often it would need to be shut down and the now highly radioactive container of the mercury replaced by a new one, because its steel embrittles from radiation damage. However, because the proton beam impacts the mercury and generates shock waves, which cause cavitation bubbles to collapse in the mercury and erode the steel, the replacement may need to be more often than originally planned at full operating power. Indeed, achieving full design power is in jeopardy.

"With downtime associated with unplanned container replacement worth around $12 million, engineers at the facility are considering introducing helium bubbles, of the correct size and number, into the mercury to help absorb the shock waves before they hit the wall, so that the cavitation bubbles do not erode the steel. Oak Ridge National Laboratory (ORNL) and the Science and Facilities Research Council (Rutherford Appleton Laboratory, RAL) commissioned us as part of their programme to devise instruments to check that their bubble generators can deliver the correct number and size of bubbles to the location where they will protect the pipelines from erosion.

"This paper reports on the method we devised half-way through the research contract. It works, but just after we designed it the 2008 global financial crash occurred, and funds were no longer available to build the device into the mercury pipelines of ORNL. A more affordable solution had to be found, which is what we are now working on. The original design has been put on hold for when the world is in a healthier financial state. This has been a fantastic opportunity to work with nuclear scientists and engineers from ORNL and RAL."

Glenn Harris | EurekAlert!
Further information:
http://www.soton.ac.uk

Further reports about: BSD Deepwater Horizon Laboratory ORNL RAL SNS Southampton TTF shock wave sound wave

More articles from Process Engineering:

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>