Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new level for continuous-wave terahertz lasers

02.10.2013
A robust surface emitting continuous-wave terahertz quantum cascade laser has been realized in a two-dimensional photonic crystal structure by a second order Bragg grating extractor that simultaneously provides the boundary condition necessary for mode selection.

Since the first quantum cascade (QC) laser was demonstrated in 1994 and implemented in THz regime in 2002, they have become one of the most important solid state light sources in this frequency range.



The metal-metal (MM) waveguide was a key improvement in applying the quantum cascade concept from mid-infrared to THz range, allowing for a sub-wavelength field confinement. Nevertheless, this confinement leads to a highly divergent beam from the facet. Different strategies like photonic crystal (PhC) or metallic grating distributed feedback (DFB) patterning for in plane or vertical emission have been developed.

However, most of these progresses were demonstrated in pulsed operation mode. Continuous-wave (CW) operation performance is still limited and far from being optimized, despite the fact that it is of a crucial demand in astrophysics, biology, sensing, environmental and pollutant monitoring, or security screening.

Distributed feedback and PhC QC lasers are amongst the leading candidates in the field of semiconductor light sources with high performance CW and single mode operation in the THz frequency range. Absorbing boundary condition is a commonly used method to control the optical performance of a laser in double-metal confinement. However, this approach increases the total loss in the device and results in a large threshold current density, limiting the CW maximum output power and operating temperature.

Swiss researchers now present a new approach: they replaced the loss type boundary conditions by a second order Bragg grating which can diffract TM polarized in-plane radiation at the required frequency into vertical emission. More importantly, instead of absorbing the radiation at the boundary, to ensure the single mode operation this Bragg grating scatters them into desired vertical emission. A large pumping efficiency with better heat flow dissipation is achieved: The new design enables CW operation that is significantly improved in terms of maximum output power and Tmax.

The team from Ecole Polytechnique Fédérale de Lausanne (EPFL) and Eidgenössische Technische Hochschule Zürich (ETHZ) report single mode surface emission with several milliwatts output power at 3.12 THz. A maximum operation temperature (Tmax) of 100 K was achieved. The scientists were able to demonstrate a highly collimated far-field pattern, which is an important step towards real world applications.

Thanks to the scalability of PhCs, their new design can be applied throughout the entire THz wavelength range, especially for longer wavelengths. The researchers are convinced that a variety of real applications of the CW operation THz light sources can be achieved in the future with optimized slope efficiencies and remarkable output powers above the liquid nitrogen temperature.

(Text contributed by K. Maedefessel-Herrmann)

Houdré, R., et al., Laser Photonics Rev., 7(5), L45-L50 (2013); DOI 10.1002/lpor.201300035

http://onlinelibrary.wiley.com/doi/10.1002/lpor.201300035/abstract

Laser & Photonics Reviews is an international journal which covers the current range of laser physics and photonics, both theoretical and experimental, from recent research to specific developments and novel applications. The journal publishes Review Articles, Original Papers and Letters. Latest Journal Impact Factor (2012): 7.976 (ISI Journal Citation Reports 2012)

Regina Hagen | Wiley-VCH Verlag GmbH & Co. KGaA
Further information:
http://www.wiley.com

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>