Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A coating that protects against heat and oxidation

24.11.2014

Researchers have developed a coating technique that they plan to use to protect tur- bine engine and waste incinerator components against heat and oxidation. A topcoat from micro-scaled hollow aluminium oxide spheres provides heat insulation, in the lab, already proved more economical than conventional techniques.

Gases don’t conduct heat as well as solids do. Cellular or aerated concretes take advantage of this effect, which experts call “gas-phase insulation”.


Hollow balls of aluminum oxide are fi lled with gas. Scientists have developed an economical way of manufacturing these insulators.

© Fraunhofer ICT

The heat barrier is achieved by air encased in the cavities of the concrete. But gas-phase insulation has far greater potential than keeping our homes warm. It can also be used to protect turbine engine and waste incinerator components when subjected to intense heat. All you need to do is transfer this effect to a coating that is just a few hundred micrometers thick.

Temperature differences of over 400 degrees Celsius

Scientists at the Fraunhofer Institute for Chemical Technology ICT in Pfinztal have not only done just that, they’ve also done it in a particularly economical way. They’ve designed a coating that consists of an outer topcoat from conjoined aluminium oxide spheres.

“These spheres are hollow and filled with gas,” explains coatings expert Dr. Vladislav Kolarik from the ICT’s Energetic Systems department. When the outer side of a part is exposed to temperatures of 1000 degrees Celsius, these gas-filled spheres reduce temperatures on the part’s inner side to under 600 degrees Celsius – as the ICT scientists have demonstrated in their laboratories.

Since gas and steam turbines used for energy generation, combustion chambers, waste incinerator generators and temperature sensors, and reactors in the chemical and petrochemical industries are all subjected to temperatures of up to 1000 degrees Celsius, there is considerable demand of thermal protection.

What’s most remarkable is that the heat insulating layer from hollow aluminium oxide spheres is obtained on the basis of a conventional, economic process. Operators only have to do some simple math to see the benefits: conventional thermal barrier techniques – most of which are based on ceramic materials – are expensive. The process the scientists adapted was originally designed to protect metallic components from oxidation.

“We’ve optimized the technique so that the coat not only retains its oxidation protection, but furthermore protects against heat,” says Dr. Kolarik. The basic coating layer forms by interaction of aluminum particles and the metallic component. This is done by depositing aluminum powder on the surface of the metal and heating it all up to a suitable temperature over several hours. The result is an aluminum-rich coating on the component’s surface that protects against oxidation at high temperature. With the new procedure the topcoat from the hollow aluminum oxide spheres is additionally formed. “Up to now, it never occurred to anyone to use these spheres to produce another coating layer – they were just a waste product,” says Dr. Kolarik.

Now the scientists have refined the process so they can produce both coating layers in the required thickness. The way it works is to take aluminum particles and mix them with a viscous liquid bonding agent. This produces a substance similar to a paint or slurry, which the scientists then manually paint, spray or brush onto the metallic component. “All that’s left is to add a fair bit of heat,” says Dr. Kolarik. But it’s all easier said than done: Dr. Kolarik and his team have had to precisely fine tune the size and size distribution of the aluminum particles, the temperature and duration of the heating stage and the viscosity of bonding agents. “Just like a master chef, the first job was to come up with a winning recipe.”

“We’re currently in the process of putting the findings from the EU-funded PARTICOAT project into practice. This involves coating bigger and bigger components without exceeding the temperature limits for each application area. At the same time we’re trying out techniques to automate the whole coating process. Our plan is to follow in the footsteps of the aerated concrete that helps insulate our homes – that’s been in series production for a long time now,” says Dr. Kolarik.

More information:
http://www.particoat.eu

Dr. Vladislav Kolarik | Fraunhofer-Institut
Further information:
http://www.fraunhofer.de/en/press/research-news/2014/november/a-coating-that-protects-against-heat-and-oxidation.html

More articles from Process Engineering:

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>