Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Air laser' may sniff bombs, pollutants from a distance

31.01.2011
Princeton University engineers have developed a new laser sensing technology that may allow soldiers to detect hidden bombs from a distance and scientists to better measure airborne environmental pollutants and greenhouse gasses.

"We are able to send a laser pulse out and get another pulse back from the air itself," said Richard Miles, a professor of mechanical and aerospace engineering at Princeton, the research group leader and co-author on the paper. "The returning beam interacts with the molecules in the air and carries their finger prints."


Researchers at Princeton University developed a technique for generating a laser beam out of nothing but air. They focus a pump laser on a distant point in the air and another laser beam comes back. The image shows a pulse of infra-red light from this \"air laser.\" The center region represents the highest intensity; the outer areas have lower intensity light. The technique could be used for sensing minute quantities of gas in the air from a distance. Credit: Image courtesy Arthur Dogariu, Princeton University

The new technique differs from previous remote laser-sensing methods in that the returning beam of light is not just a reflection or scattering of the outgoing beam. It is an entirely new laser beam generated by oxygen atoms whose electrons have been "excited" to high energy levels. This "air laser" is a much more powerful tool than previously existed for remote measurements of trace amounts of chemicals in the air.

The researchers, whose work is funded by the Office of Naval Research's basic research program on Sciences Addressing Asymmetric Explosive Threats, published their new method Jan. 28 in the journal Science.

Miles collaborated with three other researchers: Arthur Dogariu, the lead author on the paper, and James Michael of Princeton, and Marlan Scully, a professor with joint appointments at Princeton and Texas A&M University.

The new laser sensing method uses an ultraviolet laser pulse that is focused on a tiny patch of air, similar to the way a magnifying glass focuses sunlight into a hot spot. Within this hot spot – a cylinder-shaped region just 1 millimeter long – oxygen atoms become "excited" as their electrons get pumped up to high energy levels. When the pulse ends, the electrons fall back down and emit infrared light. Some of this light travels along the length of the excited cylinder region and, as it does so, it stimulates more electrons to fall, amplifying and organizing the light into a coherent laser beam aimed right back at the original laser.

Researchers plan to use a sensor to receive the returning beam and determine what contaminants it encountered on the way back.

"In general, when you want to determine if there are contaminants in the air you need to collect a sample of that air and test it," Miles said. "But with remote sensing you don't need to do that. If there's a bomb buried on the road ahead of you, you'd like to detect it by sampling the surrounding air, much like bomb-sniffing dogs can do, except from far away. That way you're out of the blast zone if it explodes. It's the same thing with hazardous gases – you don't want to be there yourself. Greenhouse gases and pollutants are up in the atmosphere, so sampling is difficult."

The most commonly used remote laser-sensing method, LIDAR -- short for light detection and ranging -- measures the scattering of a beam of light as it reflects off a distant object and returns back to a sensor. It is commonly used for measuring the density of clouds and pollution in the air, but can't determine the actual identity of the particles or gases. Variants of this approach can identify contaminants, but are not sensitive enough to detect trace amounts and cannot determine the location of the gases with much accuracy.

The returning beam is thousands of times stronger in the method developed by the Princeton researchers, which should allow them to determine not just how many contaminants are in the air but also the identity and location of those contaminants.

The stronger signal should also allow for detection of much smaller concentrations of airborne contaminants, a particular concern when trying to detect trace amounts of explosive vapors. Any chemical explosive emits various gases depending on its ingredients, but for many explosives the amount of gas is miniscule.

While the researchers are developing the underlying methods rather than deployable detectors, they envision a device that is small enough to be mounted on, for example, a tank and used to scan a roadway for bombs.

So far, the researchers have demonstrated the process in the laboratory over a distance of about a foot and a half. In the future they plan to increase the distance over which the beams travel, which they note is a straightforward matter of focusing the beam farther way. They also plan to fine-tune the sensitivity of the technique to identify small amounts of airborne contaminants.

In addition, the research group is developing other approaches to remote detection involving a combination of lasers and radar.

"We'd like to be able to detect contaminants that are below a few parts per billion of the air molecules," Miles said. "That's an incredibly small number of molecules to find among the huge number of benign air molecules."

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu

Further reports about: Ambient Air Princeton energy levels laser beam oxygen atom

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>