Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zooming in on an Infant Solar System

11.06.2010
For the first time, astronomers have observed solar systems in the making in great detail.

A team led by University of Arizona astronomer Joshua Eisner has observed in unprecedented detail the processes giving rise to stars and planets in nascent solar systems.

The discoveries, published in the Astrophysical Journal (available online at http://xxx.lanl.gov/abs/1006.1651), provide a better understanding of the way hydrogen gas from the protoplanetary disk is incorporated into the star.

By coupling both Keck telescopes on Mauna Kea in Hawaii with a specifically engineered instrument named ASTRA (ASTrometric and phase-Referenced Astronomy), Eisner and his colleagues were able to peer deeply into protoplanetary disks – swirling clouds of gas and dust that feed the growing star in its center and eventually coalesce into planets and asteroids to form a solar system.

The big challenge facing Eisner's team lies in obtaining the extremely fine resolution necessary to observe the processes that happen at the boundary between the star and its surrounding disk – 500 light years from Earth. It's like standing on a rooftop in Tucson trying to observe an ant nibbling on a grain of rice in New York's Central Park.

"The angular resolution you can achieve with the Hubble Space Telescope is about 100 times too coarse to be able to see what is going on just outside of a nascent star not much bigger than our sun," said Eisner, an assistant professor at UA's Steward Observatory. In other words, even a protoplanetary disk close enough to be considered in the neighborhood of our solar system would appear as a featureless blob.

Combining the light from the two Keck telescopes provides an angular resolution finer than Hubble's. Eisner and his team used a technique called spectro-astrometry to boost resolution even more. By measuring the light emanating from the protoplanetary disks at different wavelengths with both Keck telescope mirrors and manipulating it further with ASTRA, the researchers achieved the resolution needed to observe processes in the centers of the nascent solar systems.

Protoplanetary disks form in stellar nurseries when clouds of gas molecules and dust particles begin to collapse under the influence of gravity.

Initially rotating slowly, the cloud's growing mass and gravity cause it to become more dense and more compact. The preservation of rotational momentum speeds up the cloud as it shrinks, much like a figure skater spins faster as she tugs in her arms. The centrifugal force flattens the cloud into a spinning disk of swirling gas and dust, eventually giving rise to planets orbiting their star in roughly the same plane.

Combining the Keck interferometer with the spectro-astrometry technique, Eisner and his collaborators were able to distinguish between the distributions of gas, mostly made up of hydrogen, and dust, thereby resolving the disk's features.

"We were able to get really, really close to the star and look right at the interface between the gas-rich protoplanetary disk and the star," said Eisner, who serves as project scientist on the ASTRA team.

Astronomers know that stars acquire mass by incorporating some of the hydrogen gas in the disk that surrounds them, in a process called accretion.

"We want to understand how material accretes onto the star," Eisner said. "This process has never been measured directly."

Accretion can happen in one of two ways.

In one scenario, gas is swallowed as it washes up right to the fiery surface of the star.

In the second, much more violent scenario, the magnetic fields sweeping from the star push back the approaching gas and cause it to bunch up, creating a gap between the star and its surrounding disk. Rather than lapping at the star's surface, the hydrogen atoms travel along the magnetic field lines as if on a highway, becoming super-heated and ionized in this process.

"Once trapped in the star's magnetic field, the gas is being funneled along the field lines arching out high above and below the disk's plane," Eisner explained. "The material then crashes into the star's polar regions at high velocities."

In this inferno, which releases the energy of millions of Hiroshima-sized atomic bombs every second, some of the arching gas flow is ejected from the disk and spews out far into space as interstellar wind.

Eisner's team pointed the telescopes at 15 protoplanetary disks with young stars varying in mass between one half and 10 times that of our sun. This sample of disks, all located in our own galaxy, the Milky Way, represents by far the largest of its kind.

"We could successfully discern that in most cases, the gas converts some of its kinetic energy into light very close to the stars" he said, a tell-tale sign of the more violent accretion scenario.

"In other cases, we saw evidence of winds launched into space together with material accreting on the star," Eisner added. "We even found an example – around a very high-mass star – in which the disk may reach all the way to the stellar surface."

The solar systems the astronomers chose for this study are still young, probably a few million years old.

"These disks will be around for a few million years more," Eisner said. "By that time, the first planets, gas giants similar to Jupiter and Saturn, may form, using up a lot of the disk material."

More solid, rocky planets like the Earth, Venus or Mars, won't be around until much later.

"But the building blocks for those could be forming now," he said, which is why this research is important for our understanding of how solar systems form, including those with potentially habitable planets like Earth.

"We are going to see if we can make similar measurements of organic molecules and water in protoplanetary disks," he said. "Those would be the ones potentially giving rise to planets with the conditions to harbor life."

Eisner's co-authors on the paper are John Monnier from the University of Michigan; Julien Woillez, Sam Ragland and Peter Wizinowich from Keck Observatory; Rachel Akeson and Rafael Millan-Gabet from NASA's Exoplanet Science Institute at Caltech; James Graham at the University of California Berkeley; Lynne Hillenbrand from Caltech's Astrophysics department; and Joerg-Uwe Pott from the Max-Planck-Institut fuer Astronomie in Heidelberg, Germany.

The ASTRA project was made possible by a Major Research Instrumentation Grant from the National Science Foundation.

Reference: (available online at http://xxx.lanl.gov/abs/1006.1651) Eisner et al. Spatially and Spectrally Resolved Hydrogen Gas within 0.1 AU of T Tauri and Herbig Ae/Be Stars. Astrophysical Journal Vol. 718, July 20, 2010 (scheduled)

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu
http://xxx.lanl.gov/abs/1006.1651

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>