Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zooming in on an Infant Solar System

11.06.2010
For the first time, astronomers have observed solar systems in the making in great detail.

A team led by University of Arizona astronomer Joshua Eisner has observed in unprecedented detail the processes giving rise to stars and planets in nascent solar systems.

The discoveries, published in the Astrophysical Journal (available online at http://xxx.lanl.gov/abs/1006.1651), provide a better understanding of the way hydrogen gas from the protoplanetary disk is incorporated into the star.

By coupling both Keck telescopes on Mauna Kea in Hawaii with a specifically engineered instrument named ASTRA (ASTrometric and phase-Referenced Astronomy), Eisner and his colleagues were able to peer deeply into protoplanetary disks – swirling clouds of gas and dust that feed the growing star in its center and eventually coalesce into planets and asteroids to form a solar system.

The big challenge facing Eisner's team lies in obtaining the extremely fine resolution necessary to observe the processes that happen at the boundary between the star and its surrounding disk – 500 light years from Earth. It's like standing on a rooftop in Tucson trying to observe an ant nibbling on a grain of rice in New York's Central Park.

"The angular resolution you can achieve with the Hubble Space Telescope is about 100 times too coarse to be able to see what is going on just outside of a nascent star not much bigger than our sun," said Eisner, an assistant professor at UA's Steward Observatory. In other words, even a protoplanetary disk close enough to be considered in the neighborhood of our solar system would appear as a featureless blob.

Combining the light from the two Keck telescopes provides an angular resolution finer than Hubble's. Eisner and his team used a technique called spectro-astrometry to boost resolution even more. By measuring the light emanating from the protoplanetary disks at different wavelengths with both Keck telescope mirrors and manipulating it further with ASTRA, the researchers achieved the resolution needed to observe processes in the centers of the nascent solar systems.

Protoplanetary disks form in stellar nurseries when clouds of gas molecules and dust particles begin to collapse under the influence of gravity.

Initially rotating slowly, the cloud's growing mass and gravity cause it to become more dense and more compact. The preservation of rotational momentum speeds up the cloud as it shrinks, much like a figure skater spins faster as she tugs in her arms. The centrifugal force flattens the cloud into a spinning disk of swirling gas and dust, eventually giving rise to planets orbiting their star in roughly the same plane.

Combining the Keck interferometer with the spectro-astrometry technique, Eisner and his collaborators were able to distinguish between the distributions of gas, mostly made up of hydrogen, and dust, thereby resolving the disk's features.

"We were able to get really, really close to the star and look right at the interface between the gas-rich protoplanetary disk and the star," said Eisner, who serves as project scientist on the ASTRA team.

Astronomers know that stars acquire mass by incorporating some of the hydrogen gas in the disk that surrounds them, in a process called accretion.

"We want to understand how material accretes onto the star," Eisner said. "This process has never been measured directly."

Accretion can happen in one of two ways.

In one scenario, gas is swallowed as it washes up right to the fiery surface of the star.

In the second, much more violent scenario, the magnetic fields sweeping from the star push back the approaching gas and cause it to bunch up, creating a gap between the star and its surrounding disk. Rather than lapping at the star's surface, the hydrogen atoms travel along the magnetic field lines as if on a highway, becoming super-heated and ionized in this process.

"Once trapped in the star's magnetic field, the gas is being funneled along the field lines arching out high above and below the disk's plane," Eisner explained. "The material then crashes into the star's polar regions at high velocities."

In this inferno, which releases the energy of millions of Hiroshima-sized atomic bombs every second, some of the arching gas flow is ejected from the disk and spews out far into space as interstellar wind.

Eisner's team pointed the telescopes at 15 protoplanetary disks with young stars varying in mass between one half and 10 times that of our sun. This sample of disks, all located in our own galaxy, the Milky Way, represents by far the largest of its kind.

"We could successfully discern that in most cases, the gas converts some of its kinetic energy into light very close to the stars" he said, a tell-tale sign of the more violent accretion scenario.

"In other cases, we saw evidence of winds launched into space together with material accreting on the star," Eisner added. "We even found an example – around a very high-mass star – in which the disk may reach all the way to the stellar surface."

The solar systems the astronomers chose for this study are still young, probably a few million years old.

"These disks will be around for a few million years more," Eisner said. "By that time, the first planets, gas giants similar to Jupiter and Saturn, may form, using up a lot of the disk material."

More solid, rocky planets like the Earth, Venus or Mars, won't be around until much later.

"But the building blocks for those could be forming now," he said, which is why this research is important for our understanding of how solar systems form, including those with potentially habitable planets like Earth.

"We are going to see if we can make similar measurements of organic molecules and water in protoplanetary disks," he said. "Those would be the ones potentially giving rise to planets with the conditions to harbor life."

Eisner's co-authors on the paper are John Monnier from the University of Michigan; Julien Woillez, Sam Ragland and Peter Wizinowich from Keck Observatory; Rachel Akeson and Rafael Millan-Gabet from NASA's Exoplanet Science Institute at Caltech; James Graham at the University of California Berkeley; Lynne Hillenbrand from Caltech's Astrophysics department; and Joerg-Uwe Pott from the Max-Planck-Institut fuer Astronomie in Heidelberg, Germany.

The ASTRA project was made possible by a Major Research Instrumentation Grant from the National Science Foundation.

Reference: (available online at http://xxx.lanl.gov/abs/1006.1651) Eisner et al. Spatially and Spectrally Resolved Hydrogen Gas within 0.1 AU of T Tauri and Herbig Ae/Be Stars. Astrophysical Journal Vol. 718, July 20, 2010 (scheduled)

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu
http://xxx.lanl.gov/abs/1006.1651

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>