Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zooming in on an Infant Solar System

11.06.2010
For the first time, astronomers have observed solar systems in the making in great detail.

A team led by University of Arizona astronomer Joshua Eisner has observed in unprecedented detail the processes giving rise to stars and planets in nascent solar systems.

The discoveries, published in the Astrophysical Journal (available online at http://xxx.lanl.gov/abs/1006.1651), provide a better understanding of the way hydrogen gas from the protoplanetary disk is incorporated into the star.

By coupling both Keck telescopes on Mauna Kea in Hawaii with a specifically engineered instrument named ASTRA (ASTrometric and phase-Referenced Astronomy), Eisner and his colleagues were able to peer deeply into protoplanetary disks – swirling clouds of gas and dust that feed the growing star in its center and eventually coalesce into planets and asteroids to form a solar system.

The big challenge facing Eisner's team lies in obtaining the extremely fine resolution necessary to observe the processes that happen at the boundary between the star and its surrounding disk – 500 light years from Earth. It's like standing on a rooftop in Tucson trying to observe an ant nibbling on a grain of rice in New York's Central Park.

"The angular resolution you can achieve with the Hubble Space Telescope is about 100 times too coarse to be able to see what is going on just outside of a nascent star not much bigger than our sun," said Eisner, an assistant professor at UA's Steward Observatory. In other words, even a protoplanetary disk close enough to be considered in the neighborhood of our solar system would appear as a featureless blob.

Combining the light from the two Keck telescopes provides an angular resolution finer than Hubble's. Eisner and his team used a technique called spectro-astrometry to boost resolution even more. By measuring the light emanating from the protoplanetary disks at different wavelengths with both Keck telescope mirrors and manipulating it further with ASTRA, the researchers achieved the resolution needed to observe processes in the centers of the nascent solar systems.

Protoplanetary disks form in stellar nurseries when clouds of gas molecules and dust particles begin to collapse under the influence of gravity.

Initially rotating slowly, the cloud's growing mass and gravity cause it to become more dense and more compact. The preservation of rotational momentum speeds up the cloud as it shrinks, much like a figure skater spins faster as she tugs in her arms. The centrifugal force flattens the cloud into a spinning disk of swirling gas and dust, eventually giving rise to planets orbiting their star in roughly the same plane.

Combining the Keck interferometer with the spectro-astrometry technique, Eisner and his collaborators were able to distinguish between the distributions of gas, mostly made up of hydrogen, and dust, thereby resolving the disk's features.

"We were able to get really, really close to the star and look right at the interface between the gas-rich protoplanetary disk and the star," said Eisner, who serves as project scientist on the ASTRA team.

Astronomers know that stars acquire mass by incorporating some of the hydrogen gas in the disk that surrounds them, in a process called accretion.

"We want to understand how material accretes onto the star," Eisner said. "This process has never been measured directly."

Accretion can happen in one of two ways.

In one scenario, gas is swallowed as it washes up right to the fiery surface of the star.

In the second, much more violent scenario, the magnetic fields sweeping from the star push back the approaching gas and cause it to bunch up, creating a gap between the star and its surrounding disk. Rather than lapping at the star's surface, the hydrogen atoms travel along the magnetic field lines as if on a highway, becoming super-heated and ionized in this process.

"Once trapped in the star's magnetic field, the gas is being funneled along the field lines arching out high above and below the disk's plane," Eisner explained. "The material then crashes into the star's polar regions at high velocities."

In this inferno, which releases the energy of millions of Hiroshima-sized atomic bombs every second, some of the arching gas flow is ejected from the disk and spews out far into space as interstellar wind.

Eisner's team pointed the telescopes at 15 protoplanetary disks with young stars varying in mass between one half and 10 times that of our sun. This sample of disks, all located in our own galaxy, the Milky Way, represents by far the largest of its kind.

"We could successfully discern that in most cases, the gas converts some of its kinetic energy into light very close to the stars" he said, a tell-tale sign of the more violent accretion scenario.

"In other cases, we saw evidence of winds launched into space together with material accreting on the star," Eisner added. "We even found an example – around a very high-mass star – in which the disk may reach all the way to the stellar surface."

The solar systems the astronomers chose for this study are still young, probably a few million years old.

"These disks will be around for a few million years more," Eisner said. "By that time, the first planets, gas giants similar to Jupiter and Saturn, may form, using up a lot of the disk material."

More solid, rocky planets like the Earth, Venus or Mars, won't be around until much later.

"But the building blocks for those could be forming now," he said, which is why this research is important for our understanding of how solar systems form, including those with potentially habitable planets like Earth.

"We are going to see if we can make similar measurements of organic molecules and water in protoplanetary disks," he said. "Those would be the ones potentially giving rise to planets with the conditions to harbor life."

Eisner's co-authors on the paper are John Monnier from the University of Michigan; Julien Woillez, Sam Ragland and Peter Wizinowich from Keck Observatory; Rachel Akeson and Rafael Millan-Gabet from NASA's Exoplanet Science Institute at Caltech; James Graham at the University of California Berkeley; Lynne Hillenbrand from Caltech's Astrophysics department; and Joerg-Uwe Pott from the Max-Planck-Institut fuer Astronomie in Heidelberg, Germany.

The ASTRA project was made possible by a Major Research Instrumentation Grant from the National Science Foundation.

Reference: (available online at http://xxx.lanl.gov/abs/1006.1651) Eisner et al. Spatially and Spectrally Resolved Hydrogen Gas within 0.1 AU of T Tauri and Herbig Ae/Be Stars. Astrophysical Journal Vol. 718, July 20, 2010 (scheduled)

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu
http://xxx.lanl.gov/abs/1006.1651

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>