Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zeroing in on the Elusive Green LED

26.04.2011
Researchers Discover New Method for Boosting the Light Output of Green LEDs — A Critical Step Toward the Development of LED Televisions and Displays

Researchers at Rensselaer Polytechnic Institute have developed a new method for manufacturing green-colored LEDs with greatly enhanced light output.

The research team, led by Christian Wetzel, professor of physics and the Wellfleet Constellation Professor of Future Chips at Rensselaer, etched a nanoscale pattern at the interface between the LED’s sapphire base and the layer of gallium nitride (GaN) that gives the LED its green color. Overall, the new technique results in green LEDs with significant enhancements in light extraction, internal efficiency, and light output.

The discovery brings Wetzel one step closer to his goal of developing a high-performance, low-cost green LED.

“Green LEDs are proving much more challenging to create than academia and industry ever imagined,” Wetzel said. “Every computer monitor and television produces its picture by using red, blue, and green. We already have powerful, inexpensive red and blue LEDs. Once we develop a similar green LED, it should lead to a new generation of high-performance, energy-efficient display and illumination devices. This new research finding is an important step in the right direction.”

Sapphire is among the least expensive and widely used substrate materials for manufacturing LEDs, so Wetzel’s discovery could hold important implications for the rapidly growing, fast-changing LED industry. He said this new method should also be able to increase the light output of red and blue LEDs.

Results of the study, titled “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” were published last week in the journal Applied Physics Letters, and are featured in today’s issue of the Virtual Journal of Nanoscale Science & Technology, published by the American Institute of Physics and the American Physical Society. The paper may be viewed online at: http://dx.doi.org/10.1063/1.3579255

The research program is supported by the U.S. Department of Energy National Energy Technology Laboratory (NETL) Solid-State Lighting Contract of Directed Research, and the National Science Foundation (NSF) Smart Lighting Engineering Research Center (ERC), which is led by Rensselaer.

LED lighting only requires a fraction of the energy required by conventional light bulbs, and LEDs contain none of the toxic heavy metals used in the newer compact fluorescent light bulbs. In general, LEDs are very durable and long-lived.

First discovered in the 1920s, LEDs – light-emitting diodes – are semiconductors that convert electricity into light. When switched on, swarms of electrons pass through the semiconductor material and fall from an area with surplus electrons into an area with a shortage of electrons. As they fall, the electrons jump to a lower orbital and release small amounts of energy. This energy is realized as photons – the most basic unit of light. Unlike conventional light bulbs, LEDs produce almost no heat.

The color of light produced by LEDs depends on the type of semiconductor material it contains. The first LEDs were red, and not long thereafter researchers tweaked their formula and developed some that produced orange light. Years later came blue LEDs, which are frequently used today as blue light sources in mobile phones, CD players, laptop computers, and other electronic devices.

The holy grail of solid-state lighting, however, is a true white LED, Wetzel said. The white LEDs commonly used in novelty lighting applications, such as key chains, auto headlights, and grocery freezers, are actually blue LEDs coated with yellow phosphorus – which adds a step to the manufacturing process and also results in a faux-white illumination with a noticeable bluish tint.

The key to true white LEDs, Wetzel said, is all about green. High-performance red LEDs and blue LEDs exist. Pairing them with a comparable green LED should allow devices to produce every color visible to the human eye – including true white, Wetzel said. Today’s computer monitor and television produces its picture by using red, blue, and green. This means developing a high-performance green LED could therefore likely lead to a new generation of high-performance, energy-efficient display devices.

The problem, however, is that green LEDs are much more difficult to create than anyone anticipated. Wetzel and his research team and investigating how to “close the green gap,” and develop green LEDs that are as powerful as their red or blue counterparts.

Michael Mullaney | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>