Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zeroing in on the Elusive Green LED

26.04.2011
Researchers Discover New Method for Boosting the Light Output of Green LEDs — A Critical Step Toward the Development of LED Televisions and Displays

Researchers at Rensselaer Polytechnic Institute have developed a new method for manufacturing green-colored LEDs with greatly enhanced light output.

The research team, led by Christian Wetzel, professor of physics and the Wellfleet Constellation Professor of Future Chips at Rensselaer, etched a nanoscale pattern at the interface between the LED’s sapphire base and the layer of gallium nitride (GaN) that gives the LED its green color. Overall, the new technique results in green LEDs with significant enhancements in light extraction, internal efficiency, and light output.

The discovery brings Wetzel one step closer to his goal of developing a high-performance, low-cost green LED.

“Green LEDs are proving much more challenging to create than academia and industry ever imagined,” Wetzel said. “Every computer monitor and television produces its picture by using red, blue, and green. We already have powerful, inexpensive red and blue LEDs. Once we develop a similar green LED, it should lead to a new generation of high-performance, energy-efficient display and illumination devices. This new research finding is an important step in the right direction.”

Sapphire is among the least expensive and widely used substrate materials for manufacturing LEDs, so Wetzel’s discovery could hold important implications for the rapidly growing, fast-changing LED industry. He said this new method should also be able to increase the light output of red and blue LEDs.

Results of the study, titled “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” were published last week in the journal Applied Physics Letters, and are featured in today’s issue of the Virtual Journal of Nanoscale Science & Technology, published by the American Institute of Physics and the American Physical Society. The paper may be viewed online at: http://dx.doi.org/10.1063/1.3579255

The research program is supported by the U.S. Department of Energy National Energy Technology Laboratory (NETL) Solid-State Lighting Contract of Directed Research, and the National Science Foundation (NSF) Smart Lighting Engineering Research Center (ERC), which is led by Rensselaer.

LED lighting only requires a fraction of the energy required by conventional light bulbs, and LEDs contain none of the toxic heavy metals used in the newer compact fluorescent light bulbs. In general, LEDs are very durable and long-lived.

First discovered in the 1920s, LEDs – light-emitting diodes – are semiconductors that convert electricity into light. When switched on, swarms of electrons pass through the semiconductor material and fall from an area with surplus electrons into an area with a shortage of electrons. As they fall, the electrons jump to a lower orbital and release small amounts of energy. This energy is realized as photons – the most basic unit of light. Unlike conventional light bulbs, LEDs produce almost no heat.

The color of light produced by LEDs depends on the type of semiconductor material it contains. The first LEDs were red, and not long thereafter researchers tweaked their formula and developed some that produced orange light. Years later came blue LEDs, which are frequently used today as blue light sources in mobile phones, CD players, laptop computers, and other electronic devices.

The holy grail of solid-state lighting, however, is a true white LED, Wetzel said. The white LEDs commonly used in novelty lighting applications, such as key chains, auto headlights, and grocery freezers, are actually blue LEDs coated with yellow phosphorus – which adds a step to the manufacturing process and also results in a faux-white illumination with a noticeable bluish tint.

The key to true white LEDs, Wetzel said, is all about green. High-performance red LEDs and blue LEDs exist. Pairing them with a comparable green LED should allow devices to produce every color visible to the human eye – including true white, Wetzel said. Today’s computer monitor and television produces its picture by using red, blue, and green. This means developing a high-performance green LED could therefore likely lead to a new generation of high-performance, energy-efficient display devices.

The problem, however, is that green LEDs are much more difficult to create than anyone anticipated. Wetzel and his research team and investigating how to “close the green gap,” and develop green LEDs that are as powerful as their red or blue counterparts.

Michael Mullaney | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>