Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ytterbium Gains Ground in Quest for Next-Generation Atomic Clocks

13.08.2009
NIST physicists have improved an experimental atomic clock based on ytterbium atoms, which now about four times more accurate than it was several years ago, giving it a precision comparable to that of the NIST-F1 cesium fountain clock.

An experimental atomic clock based on ytterbium atoms is about four times more accurate than it was several years ago, giving it a precision comparable to that of the NIST-F1 cesium fountain clock, the nation’s civilian time standard, scientists at the National Institute of Standards and Technology (NIST) report in Physical Review Letters.*

NIST scientists evaluated the clock by measuring the natural frequency of ytterbium, carefully accounting for all possible deviations such as those caused by collisions between the atoms, and by using NIST-F1 as a “ruler” for comparison. The results were good enough to indicate that the ytterbium clock is competitive in some respects with NIST-F1, which has been improving steadily and now keeps time to within 1 second in about 100 million years. (Because the international definition of the second is based on the cesium atom, technically no clock can be more accurate than cesium standards such as NIST-F1.) More importantly, the improved ytterbium clock gives the time standards community more options in the ongoing development and comparisons of next-generation clocks, says NIST physicist Chris Oates, an author of the new paper.

The NIST ytterbium clock is based on about 30,000 heavy metal atoms that are cooled to 15 microkelvins (close to absolute zero) and trapped in a column of several hundred pancake-shaped wells—an “optical lattice”—made of laser light. A laser that “ticks” 518 trillion times per second induces a transition between two energy levels in the atoms. The clock’s enhanced performance was made possible by improvements in the apparatus and a switch to a different form of ytterbium whose nucleus is slightly magnetic due its “spin-one half” angular momentum. This atom is less susceptible to key errors than the “spin-zero” form of ytterbium used previously.

NIST scientists are developing five versions of next-generation atomic clocks, each using a different atom and offering different advantages. The experimental clocks all operate at optical (visible light) frequencies, which are higher than the microwave frequencies used in NIST-F1, and thus can divide time into smaller units, thereby yielding more stable clocks. Additionally, optical clocks could one day lead to time standards up to 100 times more accurate than today’s microwave clocks.

The best optical clocks are currently based on single ions (electrically charged atoms), such as the NIST “logic clock” using an aluminum ion (see “NIST ‘Quantum Logic Clock’ Rivals Mercury Ion as World’s Most Accurate Clock”.) But lattice clocks have the potential for higher stability because they simultaneously average signals from tens of thousands of atoms. Ongoing comparisons of the ytterbium clock to that of the strontium lattice clock located nearby at JILA, a joint institute of NIST and the University of Colorado at Boulder, (see “Collaboration Helps Make JILA Strontium Atomic Clock ‘Best in Class’”) should help enable worldwide tests of optical clock performance with extremely high precision. JILA is At this point it is far from clear which atom and clock design will be selected by research groups around the world as a future time and frequency standard.

Advances in atomic clock performance support development of technologies such as high data rate telecommunications and the Global Positioning System (GPS). Optical clocks are already providing record measurements of possible changes in the fundamental “constants” of nature, a line of inquiry that has huge implications for cosmology and tests of the laws of physics, such as Einstein’s theories of special and general relativity. Next-generation clocks might lead to new types of gravity sensors for exploring underground natural resources and fundamental studies of the Earth. Other possible applications may include ultra-precise autonomous navigation, such as landing planes by GPS.

* N. D. Lemke, A. D. Ludlow, Z.W. Barber, T. M. Fortier, S.A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker and C.W. Oates. Spin-1/2 optical lattice clock. Physical Review Letters. Published online Aug. 3, 2009.

Laura Ost | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>