Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young stars' flickering light reveals remarkable link with matter-eating black holes

14.10.2015

University of Leicester researcher involved in international study into universal physics

An international team of astronomers, including Dr Simon Vaughan from the University of Leicester's Department of Physics and Astronomy, has discovered a previously unknown link between the way young stars grow and the way black holes and other exotic space objects feed from their surroundings.


An accretion disc around a black hole.

Credit: University of Leicester

The study, 'Accretion-induced variability links young stellar objects, white dwarfs, and black holes', which is published in the journal Science Advances, shows how the 'flickering' in the visible brightness of young stellar objects (YSOs) - very young stars in the final stages of formation - is similar to the flickering seen from black holes or white dwarfs as they violently pull matter from their surroundings in a process known as accretion.

The researchers found that relatively cool accretion discs around young stars, whose inner edges can be several times the size of the Sun, show the same behaviour as the hot, violent accretion discs around planet-sized white dwarfs, city-sized black holes and supermassive black holes as large as the entire Solar system, supporting the universality of accretion physics.

The study found a relationship between the size of the central object and the speed of the flickering produced by the disc, suggesting the physics of the accretion must be very similar around these different astronomical objects despite them being completely different in other ways, such as size, age, temperature and gravity.

Dr Simon Vaughan, Reader in Observational Astronomy at the University of Leicester's Department of Physics and Astronomy, explained: "The seemingly random fluctuations we see from the black holes and white dwarfs look remarkably similar to those from the young stellar objects - it is only the tempo that changes."

The new observations were obtained with Kepler/K2 and ULTRACAM, examining accreting white dwarfs and young stellar objects.

Accretion discs are responsible for the growth and evolution of most celestial objects, from young protostars still in the star forming process to ancient supermassive black holes at the centre of galaxies.

NASA's Kepler/K2 telescope can 'listen' to the seemingly random brightness variations produced by accretion discs, revealing how they all sound the same once scaled by their physical size.

Accretion therefore is a universal process operating in the same way across all astrophysical objects.

The study was led by Simone Scaringi, a Humboldt Research Fellow at the Max Planck Institute for Extraterrestrial Physics in Garching, Germany.

The UK universities involved in the project are the University of Leicester, the University of Southampton, the University of Warwick and the University of Sheffield.

###

The initial study received funding from the Science and Technology Facilities Council.

The study, 'Accretion-induced variability links young stellar objects, white dwarfs, and black holes', which is published in the journal Science Advances, is available at: http://advances.sciencemag.org/content/1/9/e1500686

Notes to editors:

For more information please contact Dr Simon Vaughan on sav2@leicester.ac.uk or call 0116 252 2074.

About the University of Leicester

The University of Leicester is a leading UK University committed to international excellence through the creation of world changing research and high quality, inspirational teaching. Leicester is consistently one of the UK's most socially inclusive universities with a long-standing commitment to providing fairer and equal access to higher education. Leicester is a three-time winner of the Queen's Anniversary Prize for Higher and Further Education and is the only University to win seven consecutive awards from the Times Higher. Leicester is ranked among the top one per-cent of universities in the world by the THE World University Rankings.

About the University of Southampton

Through world-leading research and enterprise activities, the University of Southampton connects with businesses to create real-world solutions to global issues. Through its educational offering, it works with partners around the world to offer relevant, flexible education, which trains students for jobs not even thought of. This connectivity is what sets Southampton apart from the rest; we make connections and change the world. http://www.southampton.ac.uk/

Media Contact

Dr. Simon Vaughan
sav2@leicester.ac.uk
44-011-625-22074

 @UoLNewsCentre

http://www.leicester.ac.uk 

Dr. Simon Vaughan | EurekAlert!

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>