Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young-star discovery hints magnetism common to all cosmic jets

26.11.2010
Radio observations show first evidence for magnetic field in protostar jet

Astronomers have found the first evidence of a magnetic field in a jet of material ejected from a young star, a discovery that points toward future breakthroughs in understanding the nature of all types of cosmic jets and of the role of magnetic fields in star formation.

Throughout the Universe, jets of subatomic particles are ejected by three phenomena: the supermassive black holes at the cores of galaxies, smaller black holes or neutron stars consuming material from companion stars, and young stars still in the process of gathering mass from their surroundings. Previously, magnetic fields were detected in the jets of the first two, but until now, magnetic fields had not been confirmed in the jets from young stars.

"Our discovery gives a strong hint that all three types of jets originate through a common process," said Carlos Carrasco-Gonzalez, of the Astrophysical Institute of Andalucia Spanish National Research Council (IAA-CSIC) and the National Autonomous University of Mexico (UNAM).

The astronomers used the National Science Foundation's Very Large Array (VLA) radio telescope to study a young star some 5,500 light-years from Earth, called IRAS 18162-2048. This star, possibly as massive as 10 Suns, is ejecting a jet 17 light-years long.

Observing this object for 12 hours with the VLA, the scientists found that radio waves from the jet have a characteristic indicating they arose when fast-moving electrons interacted with magnetic fields. This characteristic, called polarization, gives a preferential alignment to the electric and magnetic fields of the radio waves.

"We see for the first time that a jet from a young star shares this common characteristic with the other types of cosmic jets," said Luis Rodriguez, of UNAM.

The discovery, the astronomers say, may allow them to gain an improved understanding of the physics of the jets as well as of the role magnetic fields play in forming new stars. The jets from young stars, unlike the other types, emit radiation that provides information on the temperatures, speeds, and densities within the jets. This information, combined with the data on magnetic fields, can improve scientists' understanding of how such jets work.

"In the future, combining several types of observations could give us an overall picture of how magnetic fields affect the young star and all its surroundings. This would be a big advance in understanding the process of star formation," Rodriguez said.

Carrasco-Gonzalez and Rodriguez worked with Guillem Anglada and Mayra Osorio of the Astrophysical Institute of Andalucia, Josep Marti of the University of Jaen in Spain, and Jose Torrelles of the University of Barcelona. The scientists reported their findings in the November 26 edition of Science.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Dave Finley | EurekAlert!
Further information:
http://www.nrao.edu

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>