Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Five Years of Stereo Imaging for NASA’s TWINS

24.06.2013
Surrounding Earth is a dynamic region called the magnetosphere. The region is governed by magnetic and electric forces, incoming energy and material from the sun, and a vast zoo of waves and processes unlike what is normally experienced in Earth-bound physics.

Nestled inside this constantly changing magnetic bubble lies a donut of charged particles generally aligned with Earth’s equator. Known as the ring current, its waxing and waning is a crucial part of the space weather surrounding our planet, able to induce magnetic fluctuations on the ground as well as to transmit disruptive surface charges onto spacecraft.


Since 2008, NASA’s two TWINS spacecraft have been providing a sterescopic view of the ring current -- a hula hoop of charged particles that encircles Earth. Credit: J. Goldstein/SWRI

On June 15, 2008, a new set of instruments began stereoscopic imaging of this mysterious region. Called Two Wide-angle Imaging Neutral-atom Spectrometers or TWINS, these satellites orbit in widely separated planes to provide the first and only stereo view of the ring current. TWINS maps the energetic neutral atoms that shoot away from the ring current when created by ion collisions.

In five years of operation, the TWINS maps have provided three-dimensional images and global characterization of this region. The observatories track how the magnetosphere responds to space weather storms, characterize global information such as temperature and shape of various structures within the magnetosphere, and improve models of the magnetosphere that can be used to simulate a vast array of events.

“With two satellites, with two sets of simultaneous images we can see things that are entirely new,” said Mei-Ching Fok, the project scientist for TWINS at NASA’s Goddard Space Flight Center in Greenbelt, Md. “This is the first ever stereoscopic energetic neutral atom mission, and it’s changed the way we understand the ring current.”

Each spacecraft is in a highly elliptical orbit called a Molniya orbit, during which the spacecraft spend most of their time around 20,000 miles above Earth, where they get a great view of the magnetosphere. Initially launched for a two-year mission, TWINS was formally extended in 2010 for three more years, with another multi-year extension pending. Over that time, TWINS has worked hand in hand with other NASA missions that provide information about Earth’s magnetosphere.

“We’ve done some fantastic new research in the last five years,” said David McComas, the principal investigator for TWINS at the Southwest Research Institute in San Antonio, Texas. “As a mission of opportunity, it is a very inexpensive mission and it continues to return incredible science.”

TWINS science is based on two instruments that can track neutral atoms. The first is a neutral atom imager that records the atoms that naturally stream away when a neutral atom collides with an ion. This allows the instrument to map the original ions from far away – as if it could see atoms the way we see light – instead of only collecting data from the areas of space it passes through.

“Over the course of the last 20 years a completely new technique evolved so we can observe charged particles, such as those in the ring current, remotely,” said McComas. “The charged particles sometimes collide with a slow-moving neutral particle, in this case from a population of neutrals from Earth’s highly extended atmosphere, the geocorona.”

When this happens, an electron hops from the slow neutral atom to the fast ion, so now the former becomes charged, and the latter neutral. That new neutral speeds off in a straight direction, unfazed by the magnetic field lines around Earth that guide and control the motion of charged particles. TWINS collects such fast neutral particles and from that data scientists can work backward to map out the location and movement of the original ions.

The other instrument on TWINS is a Lyman alpha detector, which can measure the density of hydrogen from afar, and in this case observes the hydrogen cloud around Earth, the geocorona.

Most importantly, these instruments exist on both of the TWINS spacecraft. Much of the successful research in the last five years relies on the ability to watch these neutrals from two viewpoints, allowing scientists to analyze not only speed and number of particles, but also to determine the angles at which the particles left their original collisions. The stereo vision contributed to the detailed perspectives on how the magnetosphere reacts to space weather storms: both those due to the impact of a coronal mass ejection that traveled from the sun toward Earth and due to an incoming twist in the solar wind known as a co-rotating interaction region. TWINS has also revealed that the pitch angle at which the ions travel around Earth is different on each side of the planet. Such information helps scientists determine whether the ions are more likely to escape from the ring current out into space or to ultimately funnel down toward Earth.

“TWINS is a stereo mission, providing the first observations of the neutral atoms from two vantage points, but two spacecraft give us another advantage,” said Natalia Buzulukova, a magnetospheric scientist at Goddard who works with TWINS data. “Two spacecraft provide continuous coverage of the ring current, as one set of instruments always has a view.”

Because the spacecraft orbits are not in sync they provide stereoscopic imaging for a few hours each day, but there is always at least one spacecraft keeping tabs on how events are unfolding. Prior to TWINS, a spacecraft might see a tantalizing process taking place in the ring current for only a short while before its orbit took it out of view. The event might well have finished before the spacecraft came back around for its second look.

Such continuity has proved useful to determine what governs whether particles in the ring current will precipitate downward toward Earth as well as to provide a global temperature map of the magnetic tail trailing behind Earth, the magnetotail. Such a map had only ever previously been inferred from models and statistical analysis, never from a comprehensive data set of what was actually observed.

The Lyman-alpha instrument has been used in two ways. For one thing, it quantifies the geocorona in order to better understand how it affects the collisions in the ring current. It also has taught us more about the geocorona itself. Previously, researchers believed it to be a fairly simple sphere around Earth. The two TWINS instruments have shown how asymmetric it is, changing with the solar cycle, seasons, and even the hours of the day.

A final important feature of this fire hose of TWINS data is how much it helps improve computer simulations of the ring current and the rest of the magnetosphere. With accurate computer models, scientists can better predict how the magnetosphere will react to any given space weather event.

“We get two really unique things with two spacecraft: stereo imaging and continuous coverage. Together the observations we get are fantastic,” said McComas. “It’s an incredibly powerful combination of tools.”

TWINS is an Explorer Mission of Opportunity. Southwest Research Institute leads TWINS with teams of national and international partners. Goddard manages the Explorers Program for NASA's Science Mission Directorate in Washington, D.C.

For more information about TWINS science and mission, visit:
http://science.nasa.gov/missions/twins/
Karen C. Fox
NASA's Goddard Space Flight Center, Greenbelt, Md.

Karen C. Fox | EurekAlert!
Further information:
http://www.nasa.gov
http://science.nasa.gov/missions/twins/

More articles from Physics and Astronomy:

nachricht New way to write magnetic info could pave the way for hardware neural networks
21.11.2017 | Imperial College London

nachricht From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020
21.11.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>