Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale's cool molecules

22.08.2014

It's official. Yale physicists have chilled the world's coolest molecules.

The tiny titans in question are bits of strontium monofluoride, dropped to 2.5 thousandths of a degree above absolute zero through a laser cooling and isolating process called magneto-optical trapping (MOT).


An optical cavity was used to control the wavelength of some of the lasers used for the magneto-optical trap.

Credit: Michael Helfenbein

They are the coldest molecules ever achieved through direct cooling, and they represent a physics milestone likely to prompt new research in areas ranging from quantum chemistry to tests of the most basic theories in particle physics.

"We can start studying chemical reactions that are happening at very near to absolute zero," said Dave DeMille, a Yale physics professor and principal investigator. "We have a chance to learn about fundamental chemical mechanisms."

The research is published this week in the journal Nature.

Magneto-optical trapping has become ubiquitous among atomic physicists in the past generation — but only at the single-atom level. The technology uses lasers to simultaneously cool particles and hold them in place. "Imagine having a shallow bowl with a little molasses in it," DeMille explained. "If you roll some balls into the bowl, they will slow down and accumulate at the bottom. For our experiment, the molecules are like the balls and the bowl with molasses is created via laser beams and magnetic fields."

Until now, the complicated vibrations and rotations of molecules proved too difficult for such trapping. The Yale team's unique approach drew inspiration from a relatively obscure, 1990s research paper that described MOT-type results in a situation where the usual cooling and trapping conditions were not met.

DeMille and his colleagues built their own apparatus in a basement lab. It is an elaborate, multi-level tangle of wires, computers, electrical components, tabletop mirrors, and a cryogenic refrigeration unit. The process uses a dozen lasers, each with a wavelength controlled to the ninth decimal point.

"If you wanted to put a picture of something high-tech in the dictionary, this is what it might look like," DeMille said. "It's deeply orderly, but with a bit of chaos."

It works this way: Pulses of strontium monofluoride (SrF) shoot out from a cryogenic chamber to form a beam of molecules, which is slowed by pushing on it with a laser. "It's like trying to slow down a bowling ball with ping pong balls," DeMille explained. "You have to do it fast and do it a lot of times." The slowed molecules enter a specially-shaped magnetic field, where opposing laser beams pass through the center of the field, along three perpendicular axes. This is where the molecules become trapped.

"Quantum mechanics allows us to both cool things down and apply force that leaves the molecules levitating in an almost perfect vacuum," DeMille said.

The Yale team chose SrF for its structural simplicity — it has effectively just one electron that orbits around the entire molecule. "We thought it would be best to start applying this technique with a simple diatomic molecule," DeMille said.

The discovery opens the door for further experimentation into everything from precision measurement and quantum simulation to ultracold chemistry and tests of the standard model of particle physics.

###

The lead author of the paper is John Barry, a former Yale graduate student now at the Harvard-Smithsonian Center for Astrophysics. Other authors of the paper are Yale postdoctoral fellow Danny McCarron and graduate students Eric Norrgard and Matt Steinecker.

Jim Shelton | Eurek Alert!
Further information:
http://www.yale.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>