Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale's cool molecules

22.08.2014

It's official. Yale physicists have chilled the world's coolest molecules.

The tiny titans in question are bits of strontium monofluoride, dropped to 2.5 thousandths of a degree above absolute zero through a laser cooling and isolating process called magneto-optical trapping (MOT).


An optical cavity was used to control the wavelength of some of the lasers used for the magneto-optical trap.

Credit: Michael Helfenbein

They are the coldest molecules ever achieved through direct cooling, and they represent a physics milestone likely to prompt new research in areas ranging from quantum chemistry to tests of the most basic theories in particle physics.

"We can start studying chemical reactions that are happening at very near to absolute zero," said Dave DeMille, a Yale physics professor and principal investigator. "We have a chance to learn about fundamental chemical mechanisms."

The research is published this week in the journal Nature.

Magneto-optical trapping has become ubiquitous among atomic physicists in the past generation — but only at the single-atom level. The technology uses lasers to simultaneously cool particles and hold them in place. "Imagine having a shallow bowl with a little molasses in it," DeMille explained. "If you roll some balls into the bowl, they will slow down and accumulate at the bottom. For our experiment, the molecules are like the balls and the bowl with molasses is created via laser beams and magnetic fields."

Until now, the complicated vibrations and rotations of molecules proved too difficult for such trapping. The Yale team's unique approach drew inspiration from a relatively obscure, 1990s research paper that described MOT-type results in a situation where the usual cooling and trapping conditions were not met.

DeMille and his colleagues built their own apparatus in a basement lab. It is an elaborate, multi-level tangle of wires, computers, electrical components, tabletop mirrors, and a cryogenic refrigeration unit. The process uses a dozen lasers, each with a wavelength controlled to the ninth decimal point.

"If you wanted to put a picture of something high-tech in the dictionary, this is what it might look like," DeMille said. "It's deeply orderly, but with a bit of chaos."

It works this way: Pulses of strontium monofluoride (SrF) shoot out from a cryogenic chamber to form a beam of molecules, which is slowed by pushing on it with a laser. "It's like trying to slow down a bowling ball with ping pong balls," DeMille explained. "You have to do it fast and do it a lot of times." The slowed molecules enter a specially-shaped magnetic field, where opposing laser beams pass through the center of the field, along three perpendicular axes. This is where the molecules become trapped.

"Quantum mechanics allows us to both cool things down and apply force that leaves the molecules levitating in an almost perfect vacuum," DeMille said.

The Yale team chose SrF for its structural simplicity — it has effectively just one electron that orbits around the entire molecule. "We thought it would be best to start applying this technique with a simple diatomic molecule," DeMille said.

The discovery opens the door for further experimentation into everything from precision measurement and quantum simulation to ultracold chemistry and tests of the standard model of particle physics.

###

The lead author of the paper is John Barry, a former Yale graduate student now at the Harvard-Smithsonian Center for Astrophysics. Other authors of the paper are Yale postdoctoral fellow Danny McCarron and graduate students Eric Norrgard and Matt Steinecker.

Jim Shelton | Eurek Alert!
Further information:
http://www.yale.edu

More articles from Physics and Astronomy:

nachricht Distant planet's interior chemistry may differ from our own
01.09.2015 | Carnegie Institution

nachricht Interstellar seeds could create oases of life
28.08.2015 | Harvard-Smithsonian Center for Astrophysics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Siemens sells 18 industrial gas turbines to Thailand

01.09.2015 | Press release

An engineered surface unsticks sticky water droplets

01.09.2015 | Materials Sciences

New material science research may advance tech tools

01.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>