Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-rays and electrons join forces to map catalytic reactions in real-time

30.06.2015

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real time and under real operating conditions.


This is a series of scanning transmission electron microscopy (STEM) images of platinum nanoparticles, tracking their changes under different atmospheric pressure reaction conditions.

Credit: Brookhaven National Laboratory

A team of scientists used a newly developed reaction chamber to combine x-ray absorption spectroscopy and electron microscopy for an unprecedented portrait of a common chemical reaction. The results demonstrate a powerful operando technique--from the Latin for "in working condition"--that may revolutionize research on catalysts, batteries, fuel cells, and other major energy technologies.

"We tracked the dynamic transformations of a working catalyst, including single atoms and larger structures, during an active reaction at room temperature," said study coauthor and Brookhaven Lab scientist Eric Stach. "This gives us unparalleled insight into nanoparticle structure and would be impossible to achieve without combining two complementary operando techniques."

The results were published online June 29, 2015, in the journal Nature Communications.

To prove the efficacy of this new mosquito-sized reaction chamber--called a micro-reactor--the scientists tracked the performance of a platinum catalyst during the conversion of ethylene to ethane, a model reaction relevant to many industrial synthesis processes. They conducted x-ray studies at the National Synchrotron Light Source (NSLS) and electron microscopy at the Center for Functional Nanomaterials (CFN), both DOE Office of Science User Facilities.

"The size, shape, and distribution of catalysts affect their efficiency and durability," said study coauthor Ralph Nuzzo of the University of Illinois at Urbana-Champaign. "Now that we can track those parameters throughout the reaction sequence, we can better determine the ideal design of future catalysts--especially those that drive energy-efficient reactions without using expensive and rare materials like platinum."

Hidden behind the curtain

In transmission electron microscopy (TEM), a focused electron beam passes through the sample and captures images of the nanoparticles within. This is usually performed in a pristine environment--often an inactive, low-pressure vacuum--but the micro-reactor allowed the TEM to operate in the presence of an atmosphere of reactive gases.

"With TEM, we take high-resolution pictures of the particles to directly see their size and distribution," said Stach, who leads CFN's Electron Microscopy Group. "But with the micro-reactor, some signals were too small to detect. Particles smaller than a single nanometer were hidden behind what we call the resolution curtain of the technique."

Another technique was needed to peer behind the curtain and reveal the full reaction story: x-ray absorption spectroscopy (XAS).

In XAS, a beam of x-rays bombards the catalyst sample and deposits energy as it passes through the micro-reactor. The sample then emits secondary x-rays, which are measured to identify its chemical composition--in this instance, the distribution of platinum particles.

"The XAS and TEM data, analyzed together, let us calculate the numbers and average sizes of not one, but several different types of catalysts," said coauthor and Yeshiva University scientist Anatoly Frenkel, who led the x-ray experiments. "Running the tests in an operando condition lets us track broad changes over time, and only the combination of techniques could reveal all catalytic particles."

Versatile micro-reactor

The new micro-reactor was specifically designed and built to work seamlessly with both synchrotron x-rays and electron microscopes.

"Everything was exquisitely controlled at both NSLS and CFN, including precise measurements of the progress of the catalytic reaction," Frenkel said. "For the first time, the operando approach was used to correlate data obtained by different techniques at the same stages of the reaction."

A relatively straightforward mathematical approach allowed them to deduce the total number of ultra-small particles missing in the TEM data.

"We took the full XAS data, which incorporates particles of all sizes, and removed the TEM results covering particles larger than one nanometer--the remainder fills in that crucial sub-nanometer gap in our knowledge of catalyst size and distribution during each step of the reaction," Frenkel said.

Added Stach, "In the past, scientists would look at data before and after the reaction under model conditions, especially with TEM, and make educated guesses. Now we can make definitive statements."

Brighter, faster experiments

The collaboration has already extended this operando micro-reactor approach to incorporate two additional techniques--infrared and Raman spectroscopy--and plans to introduce other complex and complementary x-ray and electron probe techniques over time.

NSLS ended its 32-year experimental run in the fall of 2014, but its successor--the just-opened National Synchrotron Light Source II (NSLS-II)--is 10,000 times brighter and promises to rapidly advance operando science.

"Each round of data collection took six hours at NSLS, but will take just minutes at NSLS-II," Stach said. "Through Laboratory Directed Research and Development funding, we will be part of the initial experiments at the Submicron Resolution X-ray (SRX) Spectroscopy beamline this summer, dramatically increasing the time resolution of the experiments and letting us track changes in a more dynamic fashion. And that's just one of the NSLS-II beamlines where we plan to deploy this technique."

The ethylene to ethane reaction happens at room temperature, but other new micro-reactors can operate at up to 800 degrees Celsius--more than hot enough for most catalytic reactions-- and will increase the versatility and applicability of the approach.

In the near future, this same micro-reactor approach will be used to explore other crucial energy frontiers, including batteries and fuel cells.

"We are seeing the emergence of a very powerful and versatile technique that leverages both NSLS-II and the CFN," said Stach, who was recently named Special Assistant for Operando Experimentation for Brookhaven's Energy Sciences Directorate. "This approach complements the many facilities being developed at Brookhaven Lab for operando energy research. Our goal is to be world leaders in operando science."

###

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Media Contact

Justin Eure
jeure@bnl.gov
631-344-2347

 @brookhavenlab

http://www.bnl.gov 

Justin Eure | EurekAlert!

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>