Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-rays in a new light

15.03.2010
The SPring-8 synchrotron opens the door to study the nonlinear interaction of high-intensity x-rays with matter

Visible light and X-rays are different types of radiation. Visible light, for example, doesn’t penetrate the human body, whereas X-rays are absorbed weakly and can be used in medical imaging.

Similar differences exist at very high light intensities, which make X-rays potentially useful in materials science, but this area—referred to as ‘nonlinear optics’—remains largely unexplored. Now, researchers from the RIKEN SPring-8 Center in Harima have taken the first step in establishing a more systematic approach to studying nonlinear X-ray effects1.

The team investigated the so-called parametric down-conversion of a single X-ray photon that splits into two separate photons, whose combined energy equals the original photon’s energy. This effect was studied in a diamond crystal, which provided the medium for this process to occur. The necessary high intensity X-ray radiation came from the SPring-8 synchrotron, which is ideally suited for the task, according to Kenji Tamasaku from the research team. “It delivers some of the world’s brightest X-rays.”

However, a competing process can occur in addition to the down-conversion: the creation of only one X-ray photon and the simultaneous excitation of one of the material’s electron to another state from the remainder of the original energy. An observer cannot distinguish which of these processes actually occurred in the material to produce outcoming photons of the same energy, which means that there is a quantum mechanical interference between both processes. This is known as the Fano effect.

Tamasaku and colleagues studied the Fano effect for a range of parameters including X-ray photon energy. Based on theoretical modeling of a large dataset available from their experiments, they quantified efficiency of the nonlinear down-conversion process of X-rays for the first time. The possibility of this achievement had long been doubtful, as it requires not only a careful experimental calibration, but also very high X-ray intensities that are available at SPring-8.

The quantitative results for the nonlinear optical parameters of the down-conversion process are convincing and largely in line with theoretical expectations, even though some of the features observed remain poorly understood.

Nevertheless, Tamasaku is confident that “these results represent the first firm base from which to venture into the frontier of X-ray nonlinear optics.” In particular, he is hopeful that the completion of a new X-ray laser called X-ray Free Electron Laser (XFEL) at SPring-8 next year will significantly expand the potential for the study of these non-linear optical effects.

The corresponding author for this highlight is based at the Coherent X-Ray Optics Laboratory, RIKEN SPring-8 Center

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6211
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>