Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-rays in a new light

15.03.2010
The SPring-8 synchrotron opens the door to study the nonlinear interaction of high-intensity x-rays with matter

Visible light and X-rays are different types of radiation. Visible light, for example, doesn’t penetrate the human body, whereas X-rays are absorbed weakly and can be used in medical imaging.

Similar differences exist at very high light intensities, which make X-rays potentially useful in materials science, but this area—referred to as ‘nonlinear optics’—remains largely unexplored. Now, researchers from the RIKEN SPring-8 Center in Harima have taken the first step in establishing a more systematic approach to studying nonlinear X-ray effects1.

The team investigated the so-called parametric down-conversion of a single X-ray photon that splits into two separate photons, whose combined energy equals the original photon’s energy. This effect was studied in a diamond crystal, which provided the medium for this process to occur. The necessary high intensity X-ray radiation came from the SPring-8 synchrotron, which is ideally suited for the task, according to Kenji Tamasaku from the research team. “It delivers some of the world’s brightest X-rays.”

However, a competing process can occur in addition to the down-conversion: the creation of only one X-ray photon and the simultaneous excitation of one of the material’s electron to another state from the remainder of the original energy. An observer cannot distinguish which of these processes actually occurred in the material to produce outcoming photons of the same energy, which means that there is a quantum mechanical interference between both processes. This is known as the Fano effect.

Tamasaku and colleagues studied the Fano effect for a range of parameters including X-ray photon energy. Based on theoretical modeling of a large dataset available from their experiments, they quantified efficiency of the nonlinear down-conversion process of X-rays for the first time. The possibility of this achievement had long been doubtful, as it requires not only a careful experimental calibration, but also very high X-ray intensities that are available at SPring-8.

The quantitative results for the nonlinear optical parameters of the down-conversion process are convincing and largely in line with theoretical expectations, even though some of the features observed remain poorly understood.

Nevertheless, Tamasaku is confident that “these results represent the first firm base from which to venture into the frontier of X-ray nonlinear optics.” In particular, he is hopeful that the completion of a new X-ray laser called X-ray Free Electron Laser (XFEL) at SPring-8 next year will significantly expand the potential for the study of these non-linear optical effects.

The corresponding author for this highlight is based at the Coherent X-Ray Optics Laboratory, RIKEN SPring-8 Center

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6211
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>