Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray pulses on demand from electron storage rings

30.05.2014

Everything we know nowadays about novel materials and the underlying processes in them we also know thanks to studies at contemporary synchrotron facilities like BESSY II.

Here, relativistic electrons in a storage ring are employed to generate very brilliant and partly coherent light pulses from the THz to the X-ray regime in undulators and other devices. However, most of the techniques used at synchrotrons are very "photon hungry" and demand brighter and brighter light pulses to conduct innovative experiments.


Some contemporary Synchroton Radiation methods need light pulsed x-rays with a specific time structure. HZB-users at BESSY II can use them now on demand. Graphics: Highway at night.

Credit: Image: K. Holldack/HZB

The general greed for stronger light pulses does, however, not really meet the requirements of one of the most important techniques in material science: photoelectron spectroscopy. Physicists and chemists have been using it for decades to study molecules, gases and surfaces of solids.

However, if too many photons hit a surface at the same time, space charge effects deteriorate the results. Owing to these limits, certain material parameters stay hidden in such cases. Thus, a tailored temporal pattern of x-ray pulses is mandatory to move things forward in surface physics at Synchrotrons.

Scientists from HZB's Institute for Methods and Instrumentation in Synchrotron Radiation Research and the Accelerator Department have now jointly solved the gordic knot as they published in the renowned journal Nature Communications.

Their novel method is capable of picking single pulses out of a conventional pulse train as usually emitted from Synchrotron facilities. They managed to apply this for the first time to time-of-flight electron spectroscopy based on modern instruments as developed within a joint Lab with Uppsala University, Sweden.

Picking single pulses out of a pulse train

The pulse picking technique is based on a quasi resonant magnetic excitation of transverse oscillations in one specific relativistic electron bunch that – like all others – generates a radiation cone within an undulator. The selective excitation leads to an enlargement of the radiation cone. Employing a detour ("bump") in the electron beam path, the regular radiation and the radiation from the excited electrons can be easily separated and only pulses from the latter arrive – once per revolution - at the experiment. Thus, the arrival time of the pulses is now perfectly accommodated for modern high resolution time-of-flight spectrometers.

Users will be able to examine band structures with higher precision

"The development of the Pulse Picking by Resonant Excitation (PPRE) was science driven by our user community working with single bunch techniques. They demand more beamtime to improve studies on e.g. graphene, topological insulators and other "hot topics" in material science like the current debates about high Tc-Superconductors, magnetic ordering phenomena and catalytic surface effects for energy storage. Moreover, with pulse picking techniques at hand, we are now well prepared for our future light source with variable pulse lengths: BESSY-VSR, where users will appreciate pulse selection on demand to readily switch from high brightness to ultrashort pulses according to their individual needs" says Karsten Holldack, corresponding author of the paper.

First tests successful

The researchers have proven the workability of their method with ARTOF-time-of-flight spectrometers at different undulators and beamlines as well as in BESSY II's regular user mode. "Here we could certainly benefit from long year experiences with emittance manipulation", says Dr. P. Kuske acting as head of the accelerator part of the team. Thanks to accelerator developments in the past, we are capable of even picking ultrashort pulses out of the bunch trains in low-alpha operation, a special operation mode of BESSY II. At last, the users can, already right now, individually switch - within minutes – between high static flux and the single pulse without touching any settings at their instruments and the sample.

###

The work has now been published on May 30th 2014 in Nature Communications: Single Bunch X-ray Pulses on Demand from a Multibunch Synchrotron Radiation Source, K. Holldack et al. DOI 10.1038/ncomms5010

Dr. Karsten Holldack | Eurek Alert!
Further information:
http://www.helmholtz-berlin.de

More articles from Physics and Astronomy:

nachricht A drop of water as a model for the interplay of adhesion and stiction
30.06.2016 | Universität Zürich

nachricht Optical lenses, hardly larger than a human hair
29.06.2016 | Universität Stuttgart

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>