Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First X-ray lasing of SACLA

11.07.2011
The world’s second X-ray Free Electron Laser (XFEL) recently went online in Japan, hot on the heels of the first, the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory in the US, which began operating in the hard X-ray region in 2009.

The world’s second X-ray Free Electron Laser (XFEL) recently went online in Japan, hot on the heels of the first, the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory in the US, which began operating in the hard X-ray region in 2009.

The advent of lasers in 1960 led to a fundamental change in photon science and technology due to the unprecedented intensity, high degree of coherence and narrow pulse width of the light that lasers can emit.

Since then, tremendous efforts have been made toward creating shorter-wavelength lasers in the hard X-ray region, with expectations for fundamental changes in X-ray science and technologies similar to those seen in the infrared, visible and ultraviolet spectral regions. As the spatial resolution of observations using light is directly related to the wavelength of light used, one of the biggest advantages of using shorter wavelength, X-ray light is the significant resolution enhancement is provides—allowing observation of subnanometer-scale structures such as atoms and molecules.

X-ray lasers cannot be built with the same technologies used to create conventional, longer-wavelength lasers. Accelerator-based free-electron lasers, however, using a self-amplified spontaneous emission (SASE) scheme, are able to generate coherent electromagnetic radiation in the X-ray region. The SASE X-ray Free Electron Laser consists of a high-performance electron linear accelerator (LINAC) and a long undulator, in which high-energy, high-density, low-emittance electron bunches are alternatively deflected in a periodic magnetic field, causing them to emit quasi-monochromatic X-rays at an energy determined by the electron energy, the magnetic field strength and the magnetic period.

The interaction between the electromagnetic field of the emitted X-rays and the electron bunch as it travels through the long undulator eventually aligns the electrons in the bunch with the period of the X-ray wavelength. The principle of SASE is that the aligned electrons move coherently in the magnetic field of the undulator to emit coherent X-rays.

Construction projects for SASE XFEL facilities began to be discussed in the US and Europe around 2000, and later materialized as the LCLS and Euro-XFEL projects. At that time, an 8 GeV electron storage ring for synchrotron radiation facility, SPring-8, was being commissioned in Japan. SPring-8 was one of three large-scale synchrotron radiation sources in the world at the time, alongside European Synchrotron Radiation Facility (ESRF) in France and the Advanced Photon Source (APS) in the US. As the technologies developed for the construction of SPring-8 are very similar to those necessary for an XFEL, the concept of the SPring-8 Compact SASE Source (SCSS), a prototype of an SASE XFEL, emerged.

To support this prototype, an in-vacuum undulator technology, higher-frequency accelerator tubes in the C-band (5,712 MHz) and a combination of a classical thermionic electric gun with a CeB6 single crystal as cathode were adopted. Based on this concept, an SASE XFEL with an 8 GeV LINAC capable of emitting coherent electromagnetic radiation at a wavelength 0.06 nm was designed. This combination of technologies allowed the facility to be constructed at a third of the length of the LCLS or Euro-XFEL facilities, measuring just 700 m.

Following the prototype SCSS project, the construction project for the XFEL was launched in FY2006 as one of the Japanese government’s ‘Key Technologies of National Importance’. At the end of FY2010, all the hardware was in place, and the facility was named the SPring-8 Angstrom Compact Free Electron Laser, or SACLA.

One of the unique features of the facility compared with the LCLS and Euro-XFEL, is its co-location with the SPring-8 synchrotron radiation facility. A new building was set up to allow the XFEL and SPring-8 X-ray beams to intersect at a sample, which will make it possible to use SPring-8 rays to observe how materials relax following an instantaneous impact from the XFEL beam. An electron beam transport from the XFEL LINAC to the SPring-8 storage ring was also built to allow the XFEL LINAC to be used as an injector for SPring-8. Electron beam commissioning for this brand-new SACLA facility began in March 2011.

On June 7, the first SASE lasing was observed at SACLA. Plans now call for reaching SASE saturation and for the initiation of X-ray optics commissioning and end-station commissioning in FY2011. In March 2012, the facility will be opened to public users from around the world.

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>