Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray lasers in focus

01.12.2008
A new large high-precision mirror is capable of focusing x-ray radiation to spot sizes of just a few nanometers

Radiation from x-ray lasers such as x-ray free electron lasers are of wide interest, as they will allow a large number of applications such as the study of the structure of single molecules. However, for such applications to be realized, the x-rays need to be strongly focused at the nanoscale.

Researchers from the RIKEN Advanced Science Institute in Wako, collaborating with researchers from Osaka University and the Japan Synchrotron Radiation Research Institute (JASRI), have now developed a mirror suitable for this task.

High-energy x-ray radiation is very damaging, so mirrors with curved surfaces are used in the focusing of x-rays to minimize penetration into imaging devices. As an incident laser beam reaches a mirror at a very small angle, a mirror surface of 400 mm in length is needed to collect all light from the laser (Fig. 1). The researchers recently published the details of their successful fabrication of the first such large-scale mirror—capable of focusing x-rays down to the theoretical limit at the nanoscale—in the journal Review of Scientific Instruments1.

The material of choice for this mirror was silicon. Being a relatively light element, it absorbs x-rays only weakly, meaning less long-term damage to the mirror. As any imperfections can have a significant impact on imaging quality, the researchers ensured the surface was perfect. According to Hitoshi Ohmori, who led the efforts at RIKEN, “the key advance in the fabrication of this mirror is the achievement of an ultra-smooth surface in combination with such a large mirror size.”

The highly polished mirror surface was achieved in a two-step procedure. First, the researchers used the high-precision grinding technique, called electrolytic in-process dressing (ELID), to obtain a height precision across the mirror of about 100 nm. Then they used the ultra-precise elastic emission machining (EEM) process, which is based on chemical reactions between the silicon surface and micron-sized abrasive particles. Overall, a precision of 2 nm was achieved across the entire 400 mm long mirror, corresponding to a height precision of 2 mm over a length roughly the distance between Tokyo and Osaka (approximately 400 km).

In the first performance tests, the researchers used the mirror to focus a 15 keV x-ray beam from the SPring-8 facility to a spot size of 75 nm—almost equal to the theoretical limit that a perfect mirror can achieve. The aim now, Ohmori emphasizes, is to perfect this technology to offer a scalable and efficient process to fabricate x-ray mirror optics.

Reference

1. Mimura, H., Morita, S., Kimura, T., Yamakawa, D., Lin, W., Uehara, Y., Matsuyama, H., Yumoto, H., Ohashi, H.., Tamasaku, K. et al. Focusing mirror for x-ray free-electron lasers. Review of Scientific Instruments 79, 083104 (2008).

The corresponding author for this highlight is based at the RIKEN Materials Fabrication Laboratory

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/577/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Extremely fine measurements of motion in orbiting supermassive black holes
28.06.2017 | Stanford University

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>