Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


X-ray lasers in focus

A new large high-precision mirror is capable of focusing x-ray radiation to spot sizes of just a few nanometers

Radiation from x-ray lasers such as x-ray free electron lasers are of wide interest, as they will allow a large number of applications such as the study of the structure of single molecules. However, for such applications to be realized, the x-rays need to be strongly focused at the nanoscale.

Researchers from the RIKEN Advanced Science Institute in Wako, collaborating with researchers from Osaka University and the Japan Synchrotron Radiation Research Institute (JASRI), have now developed a mirror suitable for this task.

High-energy x-ray radiation is very damaging, so mirrors with curved surfaces are used in the focusing of x-rays to minimize penetration into imaging devices. As an incident laser beam reaches a mirror at a very small angle, a mirror surface of 400 mm in length is needed to collect all light from the laser (Fig. 1). The researchers recently published the details of their successful fabrication of the first such large-scale mirror—capable of focusing x-rays down to the theoretical limit at the nanoscale—in the journal Review of Scientific Instruments1.

The material of choice for this mirror was silicon. Being a relatively light element, it absorbs x-rays only weakly, meaning less long-term damage to the mirror. As any imperfections can have a significant impact on imaging quality, the researchers ensured the surface was perfect. According to Hitoshi Ohmori, who led the efforts at RIKEN, “the key advance in the fabrication of this mirror is the achievement of an ultra-smooth surface in combination with such a large mirror size.”

The highly polished mirror surface was achieved in a two-step procedure. First, the researchers used the high-precision grinding technique, called electrolytic in-process dressing (ELID), to obtain a height precision across the mirror of about 100 nm. Then they used the ultra-precise elastic emission machining (EEM) process, which is based on chemical reactions between the silicon surface and micron-sized abrasive particles. Overall, a precision of 2 nm was achieved across the entire 400 mm long mirror, corresponding to a height precision of 2 mm over a length roughly the distance between Tokyo and Osaka (approximately 400 km).

In the first performance tests, the researchers used the mirror to focus a 15 keV x-ray beam from the SPring-8 facility to a spot size of 75 nm—almost equal to the theoretical limit that a perfect mirror can achieve. The aim now, Ohmori emphasizes, is to perfect this technology to offer a scalable and efficient process to fabricate x-ray mirror optics.


1. Mimura, H., Morita, S., Kimura, T., Yamakawa, D., Lin, W., Uehara, Y., Matsuyama, H., Yumoto, H., Ohashi, H.., Tamasaku, K. et al. Focusing mirror for x-ray free-electron lasers. Review of Scientific Instruments 79, 083104 (2008).

The corresponding author for this highlight is based at the RIKEN Materials Fabrication Laboratory

Saeko Okada | ResearchSEA
Further information:

More articles from Physics and Astronomy:

nachricht Novel light sources made of 2D materials
28.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>