Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray laser takes aim at cosmic mystery

13.12.2012
An international collaboration including researchers from Lawrence Livermore National Laboratory has refined a key process in understanding extreme plasmas such as those found in the sun, stars, at the rims of black holes and galaxy clusters.

In short, the team identified a new solution to an astrophysical phenomenon through a series of laser experiments.


A photograph of the instrument setup for an astrophysics experiment at the SLAC's Linac Coherent Light Source (LCLS), a powerful X-ray laser. The experiment was conducted in the Soft X-ray hutch using this electron beam ion trap, or EBIT, built at the Max Planck Institute in Heidelberg, Germany. Photo by Jose R. Crespo Lopez-Urrutia, Max Planck Institute for Nuclear Physics

In the new research, appearing in the Dec. 13 edition of the journal Nature, scientists looked at highly charged iron using the Linac Coherent Light Source (LCLS) free-electron laser. Highly charged iron produces some of the brightest X-ray emission lines from hot astrophysical objects, including galaxy clusters, stellar cornea and the emission of the sun.

The experiment helped scientists understand why observations from orbiting X-ray telescopes do not match theoretical predictions, and paves the way for future X-ray astrophysics research using free-electron lasers such as LCLS. LCLS allows scientists to use an X-ray laser to measure atomic processes in extreme plasmas in a fully controlled way for the first time.

The highly charged iron spectrum doesn't fit into even the best astrophysical models. The intensity of the strongest iron line is generally weaker than predicted. Hence, an ongoing controversy has emerged whether this discrepancy is caused by incomplete modeling of the plasma environment or by shortcomings in the treatment of the underlying atomic physics.

"Our measurements suggest that the poor agreement is rooted in the quality of the underlying atomic wave functions rather than in insufficient modeling of collision processes," said Peter Beiersdorfer, a physicist at Lawrence Livermore and one of the initiators of the project.

Greg Brown, a team member from Livermore, said: "Measurements conducted at the LCLS will be important for interpreting X-ray emissions from a plethora of sources, including black holes, binary stars, stellar coronae and supernova remnants, to name a few."

Many astrophysical objects emit X-rays, produced by highly charged particles in superhot gases or other extreme environments. To model and analyze the intense forces and conditions that cause those emissions, scientists use a combination of computer simulations and observations from space telescopes, such as NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton. But direct measurements of those conditions are hard to come by.

In the LCLS experiments, the focus was on plus-16 iron ions, a supercharged form of iron. The iron ions were created and captured using a device known as an electron beam ion trap, or EBIT. Once captured, their properties were probed and measured using the high-precision, ultra brilliant LCLS X-ray laser.

Some collaborators in the experiments have already begun working on new calculations to improve the atomic-scale astrophysical models, while others analyze data from followup experiments conducted at LCLS in April. If they succeed, LCLS may see an increase in experiments related to astrophysics.

"Almost everything we know in astrophysics comes from spectroscopy," said team member Maurice Leutenegger, of NASA's Goddard Space Flight Center, who participated in the study. Spectroscopy is used to measure and study X-rays and other energy signatures, and the LCLS results are valuable in a "wide variety of astrophysical contexts," he said.

The EBIT instrument used in the experiments was developed at the Max Planck Institute for Nuclear Physics and will be available to the entire community of scientists doing research at the LCLS. Livermore has been a pioneer in EBITs. Various EBIT devices have been operational at LLNL for more than 25 years. This was the first time that an EBIT was coupled to an X-ray laser, opening up an entirely new venue for astrophysics research, according to Beiersdorfer.

Researchers from SLAC National Accelerator Laboratory; the Max Planck Institute for Nuclear Physics in Heidelberg, Germany; NASA Goddard Space Flight Center; the Center for Free-Electron Laser Science; GSI Helmholtz Center for Heavy Ion Research; and Giessen, Bochum, Erlangen-Nuremberg and Heidelberg universities in Germany; Kavli Institute for Particle Astrophysics and Cosmology at SLAC; and TRIUMF in Canada also collaborated in the LCLS experiments.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>